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RAPID ESTIMATION OF WIND-TUNNEL CORRECTIONS WITH

APPLICATION TO WIND-TUNNEL AND MODEL DESIGN

By Harry H. Heyson

Langley Research Center

SUMMARY

A chart method is developed for the rapid estimation of wind-tunnel interference in

closed and closed-on-bottom-only tunnels. In addition, testing-limit charts, based on

varying degrees of correction, are developed. Applications of these results indicate very

powerful effects of wing sweep and the degree of correction on the usable testing range of

wind tunnels.

INTRODUCTION

One of the most difficult choices involved in the design of a wind-tunnel experiment

is the maximum allowable size of the model. Minimum allowable sizes are often required

because of Reynolds number effects or, in powered-model testing, by the size of the avail-

able powerplants and actuator components. The maximum size is set by the estimated

effects of the test-section boundaries on the flow near the model. The problem is com-

pounded in the design of the wind tunnel itself, for the initial consideration is an estimate

of the types and sizes of model which may be tested in the tunnel throughout its entire span

of operation. Only then is it possible to attempt to estimate the optimum configuration for

the test section. The eventual choices may vary greatly even for wind tunnels designed to

do essentially the same type of work. (See ref. 1.)
t

The theoretical treatments of wall effects do not actually provide directly an esti-

mate of the maximum relative sizes of model and tunnel but only the interference to be

expected for a given combination of model and tunnel. The limiting values of this inter-

ference are often obtained by reference to "rules-of-thumb" developed over the course of

many years of testing and of applying a given correction method to the results of the tests.

Thus, for tests of relatively conventional wings at moderate lift coefficients, it has long

been recognized (for example, ref. 2) that the corrected results will suffer in accuracy if

classical theory (summarized in ref. 3) predicts an interference angle in excess of 2 o, and

that the span of the wing should be less than three-quarters of the test-section width. It

must be observed that such rules have certain inherent limitations: they only apply to

models similar to those for which they were developed (in this case to relatively unswept



wings); and they only apply in relationship to a specified theoretical treatment of wall

interference. As examples, one recent paper (ref. 4) observes an equivalent limiting

value of interference angle of about 3/4 ° for highly swept or delta wings, and reference 1

has noted that interference angles on the order of 5° or more may be acceptable if more

complete theoretical treatments are employed.

The "rules" become even more complex when VTOL and STOL models are contem-

plated. For such models, with their associated large downward wake deflections, the avail-

able theory (refs. 5 to 8) indicates that the wall interferences are substantially modified

by the wake deflection, which, in turn, is a complicated function (ref. 9) of the model oper-

ating conditions. Furthermore, it has been shown, both experimentally (refs. 10 to 13) and

theoretically (refs. 14 and 15), that, under certain extreme conditions, tests of such models

may so alter the flow within the walls of the tunnel that the measured results may be

meaningless in terms of any equivalent free-air condition.

It is possible to use the theory of references 5 to 8 to correct data for a given spe-

cific operating condition if adequate information regarding the forces and their distribution

over the model is obtained during the test. On the other hand, such information may be

inadequately known during the preliminary planning of a particular test and, in any event,

such information is much too specific to one model for the design of a wind tunnel. If

attention is restricted to one broad class of vehicles for which the wake may be considered

to exist as a single blended entity (for example, rotors, jet flaps, tilt wings, deflected slip-

streams), it becomes possible to produce charts of generalized corrections which facili-

tate estimates of wall interference under extreme conditions. Indeed, a notable advance

in this direction was made by Templin (ref. 16) during the design stages of one major

wind tunnel.

Templin's analysis was limited to the tables of interference factors (for example,

ref. 17) which were available at the time for a vanishingly small model. This work, of

course, includes neither the subsequent discoveries of "flow-breakdown" limits in the tun-

nel (ref. 1_) nor the later recognition that an effective wake angle (accounting for rollup)

should be used in applying the theory of reference 7. Because of the use of the "vanish-

ingly smalt" concept, the resulting chart is somewhat inconvenient to apply since the ulti-

mate results are in terms of nondimensional interference velocities rather than directly

in terms of correction angles and dynamic pressure ratios. A more severe restriction is

that the vanishingly small concept eliminates the possibility of considering either the

effect of relative model size on the interference factors or the nonuniformity of interfer-

ence over the model. Reference 8 shows that both of these conditions introduce significant

effects.

The present analysis originated in sizing studies of several current and proposed

wind tunnels. It may be considered as a substantial expansion of the technique used by
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Templin. The average interference, the interference at a standardized tail, and the non-

uniformity of interference over the model span are computed for a wide range of wake

deflections and drag-lift ratios. By means of certain momentum relationships derived in

references 9 and 15, the operating conditions are converted to functions of two parameters,

the lift coefficient and the induced drag-lift ratio. The results are then presented in terms

of these relatively simple parameters directly as correction angles and dynamic-pressure

ratios.

The present charts are based ultimately on the theory of reference 7 as implemented

by the superposition techniques of reference 8 and the computer programs of reference 18.

They cover closed wind tunnels having width-height ratios ranging from 3 to 1/2. ' The

charts for tunnels closed only on the bottom are limited to two current examples of this

configuration and certain variable-geometry versions (ref. 19) of this type of tunnel

are considered even more briefly. The ratio of model span to tunnel width covers a wide

range, from as small as 1/12 to as great as 5/6. Because sweep was found to have nota-

ble effects on the nonuniformity of corrections, sweep angles from 0 ° to 45 ° are consid-

ered. Except for the variable-geometry tunnels, the charts are limited to models centered

in the wind-tunnel test section.

The equivalent correction angles have also been obtained from conventional interfer-

ence theory for most of the configurations considered. These corrections are compared

with those on the charts. The comparison indicates probable sources of the previously

available rules limiting the magnitude of the correction angles.

Finally, the correction charts are converted into testing limits by the expedient of

setting up somewhat arbitrary, but reasonably plausible, limits for the various effects

imposed by the constraint of the test-section boundaries. These different levels of data

correction range from considerably more rigorous techniques than now in use to no cor-

rection at all. Examples of comparisons between differing tunnel configurations are

included.

SYMBOLS

A aspect ratio, b2/S

A m momentum area of lifting system

AT cross-sectional area of test section, 4BH

B semiwidth of test section



b full spanof a wing, 2s

CD

CL

induced drag coefficient,

lift coefficient, L/qS

D/qS

D

H

induced drag

semiheight of test section

h height of lifting system above test-section floor

L lift

tail length, distance of tail behind aerodynamic center of lifting system

m an integer

n

q

qt

R

ratio of final induced velocity in wake to induced velocity at lifting system

dynamic pressure, lpV2

corrected dynamic pressure at tail

resultant force

r rotor radius

S

S

, wing area or swept area of rotor disk

• semispan of wing

u 0

V

w h

momentum theory value of longitudinal induced velocity at lifting system

flow velocity in test section

induced velocity in hovering

wo momentum theory value of vertical induced velocity at lifting system



xf distance behind model at which theoretical wake impinges on test-section

floor

Y lateral distanc_ from plane of symmetry

{2 angle of attack, positive with nose up

width-height ratio of test section, B/H

AH height of model above test-section cen[er line

boundary-induced change in tail incidence, positive with nose up

maximum boundary-induced difference in local wing incidence across

the span, positive in sense of wash-in

Aq maximum boundary-induced difference in local dynamic pressure across

the span, positive when greatest dynamic pressure is outboard of minimum

dynamic pressure

AU total boundary-induced longitudinal interference velocity

AUD boundary-induced longitudinal interference velocity resulting from

model induced drag

Au L boundary-induced longitudinal interference velocity resulting from

model lift

AW total boundary-induced vertical interference velocity

AWD boundary-induced vertical interference velocity resulting from model

induced drag

boundary-induced vertical interference velocity resulting from model lift

equivalent change in angle of attack caused by boundary interference

conventional boundary interference factor defined implicitly by AS = 5 A_ CL
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6u,D

5u,L

6w,D

5w,L

E

8

A

interference factor related to AUD

interference factor related to AUL

interference factor related to

interference factor related to

(see eq. (13d))

(see eq. (13b))

AWD (see eq. (13c)!

Aw L (see eq. (13a))

f

wake deflection angle at model from linearized theory, CL/_A,

positive downward

semiheight of tunnel divided by height of model above floor, H/h

deflection of wake from horizontal, measured at model, and positive

downward (90 ° - ×)

wing-sweep angle, measured positive rearward from lateral axis of model

P

(y

×

mass density of test medium

ratio of model span to tunnel width, _, b r2B' or

wake skew angle, angle between wake and vertical axis of tunnel, measured

at model, and positive rearward from vertical (90 ° - 8)

Subscripts:

av average

corrected value

e effective value

max maximum value

min minimum value



ANALYSIS

MOMENTUM CONSIDERATIONS

Appendix A of reference 15 extends the momentum theory of reference 9 to the cal-

culation of the lift coefficient in terms of the wake skew angle and the induced drag-lift

ratio. Equation (A18) of reference 15 gives this result in the form

_A
CL =

(tan X + D)2cos X

(1)

Also, from equation (A6) of reference 15

wo n×+
(2)

Thus, equation (1) may be rewritten as

CL _

A (tan D) 2 (_00) 2X + cos X cos X

(3)

Observe that when V/w 0 = 0, equations (1) and (3) become infinite. This result is

to be expected since the lift coefficient is defined in terms of the free-stream dynamic

pressure which is zero when V is zero.

Now, if a series of values of × and D/L are substituted into equations (2) and (3),

it is possible to crossplot the results and eventually to obtain the ideal performance of a

V/STOL aircraft as in figure 1 where the results are in terms of CL/A and D/L.

constant skew angle and lines of constant V/w 0 areLines of indicated.

The theory of reference 9 was presented originally in terms of velocities nondimen-

sionalized with respect to the hovering-induced velocity w h which is defined as

For lifting systems which have twice the induced velocity infinitely far behind the aircraft

as at the aircraft (wings, rotors, etc.), n = 2 and equation (4) reduces to (eq. (A13) of

ref. 15)

w h C/_--#- = (5)
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Thus V/w h is independentof D/L and is presented in figure 1 by meansof anauxiliary
scale on the right-hand side of the figure.

Similarly, the classical value of the downwashangleat the aircraft

is independentof D/L and is also represented by an auxiliary scale. It will be recog-
nized that _ is merely the linearized version of the net wake deflection 8 which, in
turn, is merely the complementof the wakeskew angle ×. It is of interest to observe
that for zero drag, e is very close to 8 for wake deflections as great as 20 °, but that

substantial differences occur, in either direction, if the drag significantly differs from

zero.

In order to obtain a proper perspective, it is helpful to examine the path traced out

on figure 1 by an unpowered wing. If the wake of the wing is assumed to be flat without

rolling up, it is evident that the average induced velocity, and consequently the resultant

force vector, must be perpendicular to the wake. Thus,

D = cot × (6)
L

Substitution of equation (6) into equation (3) yields, after some simplification

CL , ,, (7)--= _ s,n2_ cos ×
A

Equations (6) and (7), evaluated for various values of ×, are sufficient to obtain the

curve labeled "Unpowered wing" in figure 1. Observe that for the wing, large values

of CL/A require significant values of D/L, and the difference between 8 and e is

increased. Indeed, equation (7) has a maximum value of

CL _ 2_A

CD_ 1_A 3

_=1.21

(8)

at

× =cos-l_= 54.74 °



The maximum lift coefficient found in this manner is identical with that obtained by

use of other methods by McCormick (ref. 20) for the identical wake configuration.

It is interesting to note that the value of V/w 0 at the maximum lift coefficient

is -3/8. The maximur_ value of this parameter is -2 and occurs at a steeper wake

angle of 45 ° .

EFFECTIVE WAKE ANGLE

The wake angles X, 6, and e discussed prior to this point are all the direct pro-

duct of momentum theory. The wake of a lifting system in forward flight is unstable and

will not retain its original form or its original angular deflection as it passes rearward.

Experimentally, this condition has been shown to be true for wings (ref. 21), rotors

(ref. 22), and jets (ref. 23) and is presumably true for any lifting system; the eventual

result is a pair of trailing vortices in the flow. During the process of rolling up, these

vortices do not progress downward as rapidly as the central portions of the wake. The

central portions of the wake involve almost all the momentum transfer induced by the

lifting system. However, the actual location of these regions of the flow is constrained to

be eventually within the legs of the trailing vortex pair which exists after rollup.

The actual downward deflection angle of the wake vorticity in the rolled-up wake is

only approximately one-half that predicted by momentum theory.

already indicated that the use of a simple relationship such as

8e = _ (9)

within the theory of reference 7 leads to a satisfactory correlation of data on the same

model.

result

Indeed, reference 11 has

A theoretical treatment for elliptic loading (ref. 24) yields only a slightly different

4
0e = _-_ 8 (I0)

Equations (9) and (10) can both be obtained from rather linearized concepts of the

actual flow. They suffer from at least one significant defect; namely, for the hovering

case they do not indicate that the flow is indeed directly downward. This defect can be

eliminated, at least formally, by observing the small angle origin of equation (10) and then

extending the expression at large angles in a plausible manner by using the tangents of the

angles rather than the angles themselves (ref. 11); that is,

4
tan 8e =--w tan 8 (11)



or, in terms of the skewangle

tan Xe = _2tan X (12)
4

These various relationships are displayed and compared in figure 2. It is obvious

that there is no significant difference involved until the flow is directed downward by

angles in excess of 50 ° or 60 ° . In most cases, it will be found that it is not reasonable to

test in a wind tunnel at conditions more severe than this. On the other hand, the present

paper examines theoretical corrections when the deflections are as great as 0 = 80 °

even though such test conditions may not be meaningful. Under such conditions, the

expression for ×e given by equation (12) is the most reasonable and it has been used

throughout the entire study.

It should be pointed out that the effective skew angle is used only for obtaining the

interference factors. The values used for the induced velocities must be obtained directly

from momentum theory. Any other procedure would lead to an inbalance between the

forces and the induced velocities engendered by those forces.

INTERFERENCE CALCULATIONS

The theory of reference 7 obtains the interference velocities in terms of four inter-

ference factors relating the vertical and horizontal interference velocities at a point within

the test section to the momentum velocities caused by the lift and drag of the model.

These factors define the interference velocities as

A m

AWL = 5w, L _TTW0 (13a)

Am (13b)
Au L = 5u, L _--T-Tw0

A m

AWD = 5W, D A--_-u0
(13c)

Am (13d)
Au D = 5U, D A"_'u0

For the present purposes the momentum area of the lifting system may be taken as

the area of a circle circumscribing the lateral extremities of the model; that is,

A m = _b2/4. The cross-sectional area of the test section is A T = 4BH. Thus

10



A-T-T= 4BH =4 _= _2y

Furthermore, from refer¢nce 9,

u0 _ D

w 0 L

(14)

(15)

Now the total interference in each direction is the sum of the individual interference

velocities in that direction, or

AW=AW L+ &WD[
?

Au = Au L + AUD J

(16)

Thus, dividing each side of equations (16) by V, and substituting equations (2), (13),

(14), and (15) into equations (16) yields

m = w,L + _ 6w,

V 4(tan X+ D)

Au -7r°27 /6 D
-V- = _-u,L + _ 6u,D

(17)

For a given model configuration, tunnel configuration, skew angle, and drag-lift

ratio, equations (17) are completely determinate. The interference factors for the con-

figuration are most directly obtained from the computer programs of reference 18 by use

of the effective value of X given by equation (12).

Once the total interference velocities are known, they may be converted to a correc-

tion angle Air and a corrected velocity or dynamic-pressure ratio (see fig. 3) by means

of the relationships

AW

Acz= tan- 1 _--_-----_ (18)

= + + (19)

"_= ' V/ + (20)

11



The conditions underwhich the forces are measuredin the tunnel are thus equivalent
to a somewhatdifferent condition in free air with a corrected forward speedgiven by equa-
tion (19)anda corrected angle of attack given by

_c = _ + AS (21)

The finalstep is, of course, to resolve the resultant force R, which is totallyunal-

tered by the wall interference, into liftand drag components perpendicular and parallel to

the effectivestream axis

Lc = L cos AS- Dsin A_-_

o9 (22)

Dc Dcos AS +Lsin A

Ifthe resultsare to be presented in the form of coefficientsbased on free-stream dynamic

pressure, the expression equivalent to equation (22) is

,%

CL, c =_c_L cos A0t- CDsin AS)
(23)

CD, c = q_(CD cos A_+ CDsin AS)

In general, the operations indicated by equations (22) and (23) are not attempted

herein. The drag force in these equations and in figure 3 should quite properly be the

entire drag force and not merely the induced part of the drag. These final operations

would therefore require additional assumptions as to the magnitude of the profile or para-

site drag involved in the tests. Consequently, other than one illustrative sample, no such

generalized charts of corrected lift and drag are presented.

FLOW BREAKDOWN IN THE TUNNEL

It has been known for some time (ref. 10) that sufficiently severe downwash angles

may disrupt the basic flow in the tunnel to such an extent that the tunnel no longer pro-

vides any reasonable approximation to the essentially uniform flow that an aircraft exper-

iences in flight. Wind-tunnel testing under such conditions is pointless; thus, the present

correction charts will be invalid above some limiting value of the lift coefficient.

Reference 25 has correlated the data of reference 10, together with a few points

from references 11 and 26, in a form which may be used to provide an indication of the

upper limit of validity of the present charts. In this correlation it appears that the con-

is xf/b; where xf is the distance behind the model at which the theo-trolling parameter

retically straight wake impinges on the floor and b is the full span of the model. From

figure 4(a)

12



Xf_htan×_tan×
b b 2_y_ (24)

Observe that if h (or _) is constant or varies only as a function of X, then xf/b

will be constant along lines of constant skew angle X such as those shown in figure I.

Such a behavior indicates that a constant limiting value of xf/b will limit testing far

more severely when the model is producing a large drag that when it produces a large for-

ward thrust. Certain contrary indications for D/L < 0 result from the tests of refer-

ence 27. This disagreement is discussed in reference 15.

The models considered herein are generally centered in the tunnel test section;

however, the form of equation (24) indicates that the usable testing range of the tunnel will

be increased if the model is located above the tunnel center line, and, correspondingly

decreased if the model is located below the center line. This trend has recently been con-

firmed by the experimental results of reference 12. Such an alteration in model location

will also alter the wind-tunnel interference and the charts presented herein will not be

applicable.

The minimum allowable values of xf/b have been obtained from the correlation of

experimental results presented in reference 25 and reproduced in figure 4(b). In view of

the scatter involved in such measurements, the values used in the present paper are

chosen only within increments of one-quarter span. The actual values used are given in

the following table:

Y (xflb) rain

3 to 4/3

1

2/3

i/2

1.25

1.75

1.25

1.5

It will be observed that the values used for the very wide tunnels do not follow the

reciprocal relationship between y and 1/y that is implied by the form of presentation

in figure 4(b). The values used herein result from a preliminary examination of unpub-

lished data for wide {y = 2) tunnels which were made available through the courtesy of

William H. Rae, Jr., and Shojiro Shindo of the University of Washington. The value used

for y = 3 is an extrapolation of this result based upon the supposition that for such a

tunnel the walls are so much further from the model than the floor that their contribution

to the phenomenon should be negligible.

13



The values in the foregoing table havebeenchosento correspond to completely rec-

tangular tunnels having no corner fillets. The allowable minimum value of xf/b may

increase significantly if the test section has large fillets. The increase appears to be par-

ticularly large if the tunnel is square; however, the increase caused by fillets decreases

with the width-height ratio, and appears, from the aforementioned unpublished data, to be

negligible for very wide tunnels. This result appears to be reasonable because of the rel-

atively large distance of the walls and their fillets from the model.

The fundamental cause of the flow breakdown phenomenon appears (refs. 13 to 15) to

be a complete reversal of the flow near the point where the wake touches the floor. This

reversal gives rise to powerful standing vortices in the tunnel which, in turn, influence the

data. Since the initiation of the phenomenon is dependent almost solely upon the floor, the

same phenomenon must exist for tunnels which are closed only on the bottom even though

the location of the standing vortices and their consequent effect upon the data may be quite

different. No comprehensive examination of such tunnels has yet been made; however, a

few isolated unpublished data points indicate that essentially the same limits apply in this

configuration as well. Thus, the values in the foregoing table have been used for all tun-

nels considered herein.

The actual procedure followed in obtaining the limiting lines on the present charts

was first to solve equation (24) for × to obtain

1 X (25)

D/L, may then be inserted inThis value of ×, together with a range of values of

equation (3) to obtain the corresponding values of CL/A.

It is recognized that the present knowledge of this phenomena is not yet in a totally

satisfactory state and that future experiments may yield effects of model or tunnel config-

uration which are unrecognized at the present time. Later information on these effects

can, of course, be used to update the present charts by following this procedure, or any

necessary modification of it, as warranted by the then current state of knowledge.

CONVENTIONAL CORRECTIONS

Wherever possible, the present results are compared with those which would be

obtained by using conventional interference theory where the wake is assumed to pass

directly downstream with no downward deflection whatever. This treatment is appropriate

for a vanishingly small lift coefficient. The normal presentation of such corrections is in

the form

14



a. = Sc (26)
AT L

b2 = _b 2, equation (26) may be rewritten asSince A =-_ and A m

Aa = 6 S b 2 CL b 2 CL 4 AmCL
A T S A =6AT A =_6_T -_ (27)

Thus, the conventional correction A_, being dependent only upon CL/A , may be shown

simply as an auxiliary scale when presented on the CL/A against D/L plane of fig-

ure 1. Now the theory for deflected wakes has been shown (refs. 5, 7, and 11) to contain

as a special case (X = 90 °) the results of conventional theory. The main difference lies in

the definition of the interference factors which is such that

4 IX=90 o
(28)

Thus, equation (25) may be rewritten as

I Am CL1 6w,L (29)
Aa =- _ X=90 o A T A

Components of horizontal interference are generally neglected in the application of conven-

tional corrections even though they may attain appreciable values if the model is mounted

well above or below the center of the tunnel, or if the tunnel boundaries are dissimilar as

in the tunnels closed only on the bottom. Components of interference caused by drag

forces are also generally neglected.

It should be noted that conventional theory contains significant small-angle assump-

tions. These assumptions are entirely appropriate and in consonance with its representa-

tion of the wake as that of a model with a vanishingly small lift coefficient. Thus, conven-

tionally, Aw/V is obtained and converted to a correction angle by observing that for

small angles,

a--Ew= tanAa = Aa (30)
V

When equation (24) is applied to conditions involving very large lift coefficients, it

will be observed that the effect of the small angle assumptions (eq. (30)) is to increase the

calculated Aa significantly. As an example, consider a test condition with a lift coeffi-

cient approaching infinity. The direct use of equation (24) would yield a correction angle

15



which also approachesinfinity; however, if the small angle assumptionshad not been
employed,the left-hand scale of equation (26)wouldhavebeen tan AS and equation (26)

would then indicate a correction angle approaching only 90 °.

For the present purposes, whenever conventional corrections are displayed, it

should be understood that these corrections are complete wit__.hhsmall angle assumptions,

that streamwise interference velocities are ignored, and that any interference velocities

caused by drag forces are also ignored. This treatment is in complete conformity with

the manner in which conventional corrections are employed in practice.

As a convenience and to insure complete conformity with the present results, con-

ventional corrections, as presented herein, have been obtained directly from equation (29).

A literature search to obtain published values of 5 for use in equation (26) would have

been excessively time consuming and, in addition, would most likely not have provided all

the values required herein.

TYPES OF CHARTS

The main differences between the various types of charts presented herein lies in

the selected points at which the interference is calculated and in the subsequent treatment

of the resulting interference angles and dynamic-pressure ratios. Three main types of

charts are presented: first, the average corrections over the lifting system; second, the

corrections at a standardized tail; and, finally, certain terms representing the nonunifor-

mity of interference over the span of the model. These different types of charts are dis-

cussed separately in the following several sections of this paper.

AVERAGE CORRECTIONS

Charts of average corrections are obtained basically from the computer pro-

gram given as appendix B of reference 18. In this program interference factors are

obtained which represent average interference factors along a lifting line representing

an arbitrary wing. In the present paper, the wing generally is assumed to be centered in

the tunnel and always is assumed to be unswept and uniformly loaded. For an unswept

lifting line there is no relative displacement of any part of the line as the angle of attack

changes so that the results are independent of angle of attack. If the angle of attack is

zero and the load distribution is unaltered, the average interference over the wing in a

rectangular tunnel will be independent of sweep angle when the wake is undeflected. (See

the appendix of ref. 8.) When the wake is deflected from the horizontal, there will be

some effect of sweep angle on the corrections; however, the numerical results presented

16



in reference 8 indicate that such effects are sufficiently small that they should not inter-

fere with the intended usage of the present charts for preliminary design purposes.

For the present purposes the program of reference 18 was modified in several

regards. First, the DO loops containing X were altered to correspond to each of the

11 values of × between 10 ° and 88 ° shown in figure 1. An additional value of X = 90 °

was used to obtain the values corresponding to classical theory for use in equation (29).

The values of the interference factors were always computed by use of ×e from equa-

tion (12). Subsequently, these interference factors were used to calculate A_ and qc/q
(eqs. (17), (18), and (20)) for values of D/L ranging from -1.0 to 1.0 in increments of

0.2. In addition, CL/A was computed simultaneously from equation (3). It is important

to note that ×e was used only in obtaining the interference factors (that is, in calling Sub-

routine DLTAS of ref. 18); all other computations involved × but not ×e" The results

of these calculations were then prepared as contours of equal value against the same coor-

dinates which were used in figure 1.

The ultimate accuracy of the contours on charts such as these depends upon the

accuracy of fairing contours through the assemblage of points at which the values were

computed. The accuracy of fairing, in turn, depends upon the spacing of the points which

is actually fairly nonuniform. For the spacing specified in the foregoing paragraph, fig-

ure 1 indicates that the spacing is fairly close for large positive D/L and the spacing

becomes considerably coarser as D/L diminishes to -1. All the curves presented

herein were faired by a single individual so that some consistency in the possible error

is probably present. Although no exact tolerance can be specified, it is estimated that the

contours are most likely within 5 percent of the correct value with possibly somewhat

larger errors in regions of very large gradients.

In one case charts of the average corrections are presented for a lifting rotor.

These charts were prepared in an analogous manner to those for the wing except that the

basic program which was modified was that of appendix H of reference 18. An additional

complication arises in this calculation in that the resultant induced-force vector of the

rotor remains essentially normal to the disk; thus, the drag-lift ratio of the rotor is

related to the rotor angle of attack as

D/L = tan _ (31)

The dependence of D/L on _ is a considerable complication since changing

changes the relative location of the various parts of the rotor within the tunnel boundaries

and this effect, in turn, influences the interference factors. (See fig. 31 of ref. 8.) Thus,

it is necessary to compute the interference factors independently for each combination

of X and D/L rather than only for each value of × as in the simpler case of a wing.

It is noted that the aspect ratio of a single rotor is fixed; that is
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Therefore, unlike wings where the aspect ratio may vary over wide limits, the results

may be presented directly in terms of C L.

Only comparatively simple modifications to the already available programs of ref-

erence 18 are required in order to produce the present results. Consequently, the actual

modified programs are not presented herein.

CORRECTIONS AT THE TAIL

Because the interference within the test section is typically nonuniformly distributed,

a tail located behind a lifting system will experience a substantially different, and usually

greater, interference than the average interference over the lifting system itself. The

most powerful effects of this difference are generally related to the model pitching

moment; however, certain lifting systems of large longitudinal extent, such as low-aspect-

ratio wings or tandem rotors, may experience measurable alterations of lift or drag as

well.

The application of corrections to pitching moments (for example, ref. 28) caused by

the tail depends upon the difference in interference at the lifting system and at the tail.

This difference, of course, depends upon the tail location. In a practical sense, it is

impossible to produce charts for all possible tail locations; consequently, a single stan-

dardized tail is used herein. The tail length is chosen equal to three-quarters of the wing

span; that is, in using the programs of references 8 and 18

It 3
= _ a_ (33)

The tailheight (termed ht

tailare inthe same plane.

nounced dependence of the interference on the angle of attack, (_ has been arbitrarily

maintained throughout the paper at 20°. This value should be reasonably representative

of the maximum angles of attack at which models this long might be tested in typicalwind-

tunnel practice.

Other known effectsof model configuration generally will be found to be small com-

pared with accepting a standard taillocation. Therefore, as an economy in computing

time, the tailspan has always been considered to be zero and only the unswept wing is

considered.

in ref. 8) is arbitrarily set to zero; that is, the wing and the

Because certain of the tunnels considered herein exhibit a pro-
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Since differences between the wing and the tailare of interest,the programs of

appendixes B and D of reference 18 were combined and subjected to modifications similar

to those described in the section entitled"Average Corrections." At each combination

of X and D/L, the correction angles AS and the dynamic-pressure ratios qc/q were

calculated independently at the wing and at the tail. The results presented are in terms of

and

Ai w = Aol[ tail- A°t[wing (34)

(35)

Observe that Ai w is equivalent to a_ increase in tail-plane incidence and that qt/qc

represents an alteration in the tail efficiency factor (qt/q, sometimes denoted as _t)"

The fact that Ai w and qt/qc are not, in general, zero indicates the existence of

a gradient of interference along the longitudinal axis of the model. This gradient, even in

the absence of a tail, may have substantial effects on the model characteristics. As an

example, such a gradient can be considered as an effective aerodynamically induced cam-

ber of a wing surface. (See ref. 25.) The gradients could be computed directly (for exam-

ple, from ref. 29) and presented in some similar chart form. This computation has not

been made, however, since large values of Aiw or qt/q c should provide a reasonable

index to the existence of large gradients along the longitudinal axis of the model.

The calculation of conventional corrections for comparison purposes follows the

same general steps as those listed with the wake skew angle × set to 90 °, except that the

interference factors are converted to correction angles in a manner analogous to equa-

tion (29). In practice, many wind-tunnel tests are corrected by use of only a known distri-

bution of interference factors along the longitudinal axis of the tunnel. This procedure is

equivalent to neglecting the lowered position of the tail in the tunnel or, otherwise stated,

is equivalent to always assuming that a = 0°. Thus, the conventional corrections are

presented twice herein, once with _ = 20 ° as in the main body of the chart, and once

with _ = 0 °.

NONUNIFORMITY OF CORRECTIONS

The actual distribution of interference is nonuniform across the span of the model

as well as along its longitudinal axis. This nonuniformity can have significant effects on

the observed stall angle, and, in the case of swept wings can have powerful effects on the

pitching moment as well. A complete description of this nonuniformity would require a
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completegraph of the interference against spanwise location at eachpoint of the chart.
Since this procedure is impractical, the results are presented in terms of three indices
which only roughly indicate the degree of nonuniformity.

Thefirst of these indices is the maximum difference in AS across the span of the

wing. This term is obtained by utilizing the program given as appendix C of reference 18.

For greater accuracy the program was modified slightly to obtain the local interferences

at intervals of 0.1 semispan rather than 0.2 semispan as in the original version of refer-

ence 18. The correction angle AS and the dynamic-pressure ratio qc/q were com-

puted at each spanwise station by using equations (17), (18), and (20). The resulting values

of AS are then searched to find the maximum ,x_ and the minimum A_. Then these

values are used to obtain the maximum difference in effective wing incidence from the

equation

Aiw] = A_max " A_min (36)

The sign of Ai w is chosen according to the relative spanwise locations of the maximum

and minimum points. If the maximum ,xot occurs farther outboard than the minimum

AS, Ai w is defined as positive. Thus, positive Aiw is in the sense of a wash-in, and

negative &i w is in the sense of a wash-out.

The second index relates to the effect of the boundary interference on the local span-

wise dynamic pressure. The values of dynamic-pressure ratio which were computed

together with the local AC_ values in the preceding paragraph are searched for maximum

and minimum values. Then

qc qc
A(-_) I= (_) max - (_-) min (37)

The sign of A(qc/q) is chosen in the same manner as the sign of Aiw; thus, positive

values indicate a greater local dynamic pressure outboard of the minimum. It is desir-

able to reference this dynamic-pressure difference to that of the average corrected condi-

tion; thus, the value presented in the charts is

Z_q_ a(_) (38)

qc (_)av

Now the differences calculated to this point are not linearly distributed over the span

of the model. Thus, the final index used herein is the maximum local gradient of AS

across the span. This term is obtained by taking the previously calculated local values

of AS and searching for the maximum difference between adjacent spanwise stations.

Thus, with the given 11 points running from y//s = 0 to y/s = 1

2O



In equation(39), m increases from the root to thetip of the wing, so that the resulting
sign conventionis identical to that of equation(36).

Becauseof the finite spacingbetweenthe spanwisestations, the values obtainedby
equation(39)are not the true local slopes. Instead, they represent an average local slope
across 0.1 semispanintervals of the wing. This is just as well since it insures that a
large value is not so localized as to haveinsignificant effects.

The actual interference distributions across the spanare continuous;however, the
indices described are not necessarily also continuouswith changesin × or D/L. It is

possible to find, for example, peculiar kinked distributions for which Ai w may be posi-

tive but the maximum local slope may be negative. Similarly, for conditions in which the

interference has a sharp maximum or minimum near the middle of the span, a small

change in X or D/L may alter the distribution so that the relative position of the maxi-

mum and minimum Aa values are altered. For such a set of conditions Aiw may

actually change discontinuously from a large positive to a large negative value without

ever passing through zero.

These conditions are indicated at times in the numerical values which were used to

prepare the present charts. Examination of the numerical values indicates, however, that

such behavior is generally confined either to regions where the values are so small as to

be insignificant or to regions where the changes with × and D/L are so sharp and

severe that the charts cannot be read with significant accuracy. Consequently, no great

violence is done to the results by fairing contours as if both Ai w and its local gradient

were actually continuous. Therefore this convention was adopted in the preparation of the

current charts; indeed, to do otherwise would have required a substantial expansion of the

number of calculated points in order to obtain greater definition.

Wing sweep is found to have major effects on the nonuniformity of corrections as

would be expected from the results of reference 8. Thus, it is necessary to consider a

range of sweep angles encompassing current design practice.

In order to achieve lift coefficients (or, more properly CL/A)_ of the order dealt

with herein, a wing would most likely require a significant angle of attack. The angle of

attack by itself may noticeably alter the distribution of interference over the span (ref. 8)

if the wing is swept. However, in terms as general as those used herein, the angle of

attack is indeterminate. It would depend not only on aspect ratio, but also upon the addi-

t.ion of power to increase lift as, for example, the use of a trailing-edge jet on a jet-flap
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model or an array of propellers on a tilt-wing model. Consequently,the charts illus-
trating thenonuniformity of correction haveall beenprepared for _ = 0°. This pro-

cedure also eliminates any concern about the point about which the model rotates as the

angle of attack changes; such an effect has also been shown (ref. 8) to have a large influ-

ence on the interference.

As before, the conventional corrections of identical nature are obtained by the analo-

gous treatment of the interference factors with × set equal to 90 °.

NONRE CTANGULAR TUNNELS

The theory of references 5 to 8 applies to rectangular tunnels. The full-scale tun-

nels at the Ames and Langley Research Centers do not fall into this category; thus,

strictly speaking, they cannot be treated by this theory. Unfortunately, no theory compar-

able to that of references 5 to 8 exists at present to cover such configurations in which

the sides of the test sections are in the form of circular arcs. Nevertheless, these two

wind tunnels play such a prominent part in low-speed wind-tunnel testing that at least an

approximate treatment is required in the present study.

For the present purposes it has been assumed that tb.ese tunnels should have about

the same interference as a rectangular tunnel having the same cross-sectional area and

the same average width. This treatment is analogous to that used for circular tunnels in

reference 30.

The Ames Research Center tunnel has a width of 24.4 meters (80 ft) and a height

of 12.2 meters (40 ft) for a nominal width-height ratio of 2. The average width divided

by the height yields an effective width-height ratio of _'e = 1 + v/4 which is approxi-

mately 11 percent less than the nominal width-height ratio.

The Langley Research Center tunnel is basically an open tunnel of the identical con-

figuration with a width of 18.3 meters (60 ft) and a height of 9.1 meters (30 ft). How-

ever, a ground board is generally installed in the tunnel for high-lift testing. This ground

board is not at the lower boundary of the open tunnel but is located 0.61 meter (2 ft)

above the lower boundary. This is the configuration treated herein. The active or use-

ful region of this closed-on-bottom-only configuration has a height of 8.5 meters (28 ft)

so that the nominal width-height ratio is 7 = 30/14 _ 2.1429. The average width of the

active region of the tunnel is found to be 16.6182 meters (54.5215 ft) so that the effective

width-height ratio is 7e = 1.9472. When a model is stated to be centered in this tunnel,

it should be understood to be centered in the active region of the tunnel and no..__tcentered

in the original open version of the tunnel. In actual use, the mounting arrangements of

the tunnel are such that the model locations tend to approximate the central location as

defined herein.
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Since in each of these tunnels the effective width has been decreased from the nomi-

nal width, it would appear necessary to alter the ratio of the model span to the tunnel

width to conform to the same average width; that is,

7 (40)
a e = a7e

The simultaneous use of both the effective re and the effective ae will be found

to yield the correct area ratio in equation (14).

These changes were made internally in the programs used to compute the numeri-

cal values upon which the charts are based. For simplicity and ease of application, the

charts are referred to the nominal rather than to the effective values of 7 and a.

It should be observed that the nominal values of width-height ratio 7 and span-

width ratio _ rather than the corresponding "effective" values, 7e and %, are used in

determining Rae's limit (eq. (24)). In the present formulation, any effect of changes in

the side boundaries, such as fillets or semicircular sides, is considered to be included in

the allowable values of xf/b.

Although no appropriate theory exists for these tunnels when the model wake is

sharply deflected, a theory appropriate to at least the Ames tunnel does exist (ref. 31) for

models having a vanishingly small lift coefficient. Certain results from that treatment

are compared with the present results for similar conditions at a later point in this paper.

PRESENTATION OF RESULTS

The closed wind-tunnels treated herein cover a wide range of width-height ratios

(fig. 5) from extremely wide tunnels (7 = 3) to extremely narrow tunnels (7 = 1/2). The

closed-on-bottom-only configuration is encountered less frequently and its treatment

herein is confined (fig. 5) to two examples representative of current practice. In each

case, a range of span-width ratios a and a range of sweep angles are considered. The

increments of span-width ratio vary for the different tunnel configurations. These incre-

ments were chosen to facilitate certain comparisons between present and proposed wind

tunnels. In any event, these charts cannot necessarily be used on the basis of equal span-

width ratios in comparing different tunnels. Several examples of their correct use are

presented later in the discussion.

Reference 19 has indicated the possibility of designing certain tunnels with variable

width-height ratio or variable model height in order to reduce the magnitude of wall inter-

ference. The variable width-height ratio type of tunnel has not yet been attempted; how-

ever, the new Langley V/STOL tunnel (ref. 32) is capable of variable model-height
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operation. Therefore, charts appropriate to this configuration, with the model height

adjusted according to × (or both × and D/L) have been prepared and are presented

herein.

It should be observed that the height of each tunnel is implicitly assumed to be that

dimension parallel to the lift-force vector and that the width is that dimension perpendicu-

lar to that vector. Thus, if for any reason it becomes desirable to mount the model with

the lifting force toward the side, the width-height ratio of a given tunnel changes from y

to 1/y. For example, in figure 6, if the initial tunnel has a width-height ratio of 3/2,

rotating the model 90 ° results in a tunnel having a width-height ratio of 2/3. A similar

model rotation in a tunnel having a width-height ratio of 2 results in a tunnel having a

width-height ratio of 1/2.

It is often desirable to test semispan models rather than complete models. Such

tests are generally accomplished by mounting the model from either the tunnel wall or the

tunnel floor and using that boundary as a reflection plane to simulate a complete model.

Interference in such tunnels is treated by considering the image reflection of both the

model and the tunnel across the surface on which the model is mounted. The width-

height ratio of the tunnel may differ according to the boundary against which the model is

mounted. For example, if the initial tunnel (fig. 6) has a width-height ratio of 3/2,

mounting from the sidewall results in a tunnel having a width-height ratio of 3, and

mounting from the floor results in a tunnel having a width-height ratio of 4/3. Similarly

mounting a semispan model from the floor of a tunnel having a width-height ratio of 2

results in a square (y = 1) tunnel. (Mounting from the sidewall in this tunnel would result

in a tunnel with y = 4; however, this Width-height ratio is not included herein.) The pos-

sibilities are reduced in a square tunnel; the width-height ratio is 1 regardless of the ori-

entation of the complete model and is 2 regardless of the boundary from which a semispan

model is mounted.

The two NASA full-scale tunnels would be somewhat more difficult to treat on this

basis because of the curved side boundaries. If these two tunnels are omitted from con-

sideration, and if it is recognized that the one rectangular closed-on-bottom-only tunnel

may be obtained simply by modifying a closed test section, it will be observed that the

present set of charts, despite their number, do not even include all the possible mountings

of centrally located models in only two basic test sections.

All the charts pertaining to each tunnel configuration are grouped together. The

results for the closed tunnels, in order of decreasing effective width-height ratio, are pre-

sented in figures 7 to 43. The charts for the closed-on-bottom-only tunnels are presented

in figures 44 to 55. The charts for the variable-model-height tunnels, together with the

appropriate model-height schedules are presented in figures 56 to 67. Table I serves as

an index to the individual figures.
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DISCUSSION

CORRECTION CHARTS

Because of the large number of charts presented herein, no attempt will be made to

discuss these correction charts in detail. Instead, only a few comments are offered con-

cerning the general nature of the results, the degree to which they agree with conventional

theory, and the degree to which these results indicate the reasons for the currently

accepted limitations on wind-tunnel testing. The following discussion is divided according

to the type of boundaries employed in the tunnel.

Closed Tunnels

Average corrections.- The average correction angles in the closed tunnels increase,

as expected, with both model size and with lift. In addition, the contours of equal values

of A(_ have a decided negative slope; that is, for a constant value of CL/A, an increase

in D/L increases the indicated correction angle. This result is anticipated since

increasing the drag at constant lift not only decreases the wake angle × (fig. 1) which

increases the vertical interference due to lift, but it also increases the vertical interfer-

ence due to drag which acts in the same sense.

There is a surprisingly good correlation between the conventional corrections and

those of the more complete analysis (refs. 5 to 8) at zero drag even, at times, for As in

excess of 10 ° or 20 °. This result may be surprising since, for high lift coefficients (low

skew angle), these papers indicate vertical interference factors significantly greater in

magnitude than the equivalent factors of conventional theory. On the other hand, exam-

ination of the behavior of 5w, L in the figures of references 7 and 8 indicates that for ×e

greater than about 75 ° to 80 °, the magnitude of 5w, L remains about constant at a value

equivalent to that of conventional theory. Indeed, the magnitude of the values for ×e on

the order of 75 ° or 80 ° may even be slightly less than those at 90 ° . Now an effective wake

skew angle of 75 ° is equivalent (eq. (12)) to a momentum skew angle of about 50 °, and it

will be seen from figure 1 that a large region of these correction charts lies below this

wake angle. (At zero drag, × = 50 ° occurs at CL/A = 3.5.) Thus, the agreement

between the conventional and the more complete theory is not surprising.

At more extreme conditions where the indicated average correction angles are very

large, it will be observed that at zero drag, the corrections in these charts are signifi-

cantly less than those that are predicted by conventional theory. This is true despite the

fact that for these low wake skew angles, 5w,L of references 5 to 8 is significantly

greater in magnitude than the equivalent interference factor of conventional theory, and

that the more complete theory also predicts a horizontal interference which generally
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tends to increase (eq. (18)) the correction angle. The reason is simply the assumption of

small angles in conventional theory. As previously discussed (eq. (30)), this assumption

tends to increase the size of the indicated correction angle substantially over that which

would be obtained without the small-angle assumptions.

The drag-lift ratio has a significant effect on the average corrections. For a cen-

trally located model in a closed tunnel with the wake passing directly rearward (× = 90°),

such effects are zero; however, the effect of the drag terms increases rapidly as the wake

is depressed downward. Because drag effects are zero for the undeflected wake, they are

not obtained in conventional theory even though the result of these effects may be signifi-

cant for wakes which are deflected only slightly downward.

Certain rules for acceptable wind-tunnel practice have been developed empirically

over many years of testing models, generally of unpowered wings, in wind tunnels. Per-

haps the most widely used of these rules (for example, ref. 2) is that the model should be

sized in relation to the tunnel so that, when using conventional corrections, AS does not

exceed 2 ° for the greatest lift coefficient at which the model is to be tested. (An alternate

form of this limit, given in ref. 4, is essentially equivalent to the foregoing statement.)

Since wings are normally tested to lifts corresponding to stall, such a limit generally

results in estimating As at the maximum lift coefficient. However, the maximum lift

is not obtained without a significant drag; the induced drag at such lift coefficients will fall

to the right-hand (higher drag) side of the curve shown for an ideal unpowered wing in fig-

ure 1. Under such conditions the correction angle indicated on the charts is significantly

greater than that predicted by conventional theory. Indeed this difference would appear

to be at least one reason for the existence of such a restrictive limit. If so, it is reason-

able to assume that such a limit should be far less restrictive than 2 ° if applied to pow-

ered models (such as rotors, for example) where very large lifts are not necessarily

associated with high drag. In such cases, if the drag were nearly zero, a more appropri-

ate limit (when considering only the average correction) might be as much as an order of

magnitude greater than 2° even when applying corrections obtained by conventional theory.

The contours of dynamic-pressure ratio indicate that in the wide tunnels at moder-

ate CL/A , there will be some small decrement in the corrected dynamic pressures. As

the width-height ratio _, decreases, the magnitude of the decrement decreases until there

is a small increase in the corrected dynamic pressure in the very deep, narrow tunnels.

The magnitude of the decrement of corrected dynamic pressure in the wide tunnels

may seem to be small if only the longitudinal interference velocities are considered.

However, the form of equations (19) and (20) shows that the vertical interference velocities

Aw will tend to compensate for the generally negative values of the longitudinal interfer-

ence velocities Au. Indeed, at extreme conditions, the increase in Aw totally
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overpowers the Au term to produceenormous increases in effective dynamic pressure.
Suchconditions are generally so severe that it wouldnot be reasonable to consider per-
forming wind-tunnel tests.

In the narrow tunnels AuL is reducedsignificantly and AuD actually reverses
sign (ref. 5). Combined with the always positive effect of AW in equation (20), the over-

all result is the mild increase in dynamic pressure shown, for example, in figure 40.

In one case (fig. 22), the model has been taken to be a uniformly loaded rotor rather

than a uniformly loaded wing. Although there are, of course, differences in the values

presented in this figure and the equivalent figure (fig. 21) for the wing, in general, the

values for the two configurations are quite similar. (In comparing these figures, note that

the aspect ratio of the rotor is 4/_ and that × = 90 ° the wake of the uniformly loaded

rotor is equivalent to that of an elliptically loaded wing.)

Effect of corrections on data.- The overall effect of corrections on a given set of

data is rather involved. In addition to the comparatively simple changes in dynamic pres-

sure and angle of attack, the resultant total-force vector is rotated with respect to the

stream axis; thus, its resolution into lift and drag components (eqs. (22) and (23)) is

altered. As observed earlier in this paper, the calculation of such effects within the pre-

sent analysis cannot be carried out rigorously because an unstated amount of profile drag

must be present in the resultant-force vector as well as in the induced drag and lift. How-

ever, for illustrative purposes only, one such set of calculations has been carried out on

the assumption of zero profile drag. (See fig. 68.)

Figure 68 shows that, as might be expected, the corrected lift coefficient is not sig-

nificantly altered at modest lift coefficients although it is obtained at a significantly differ-

ent corrected angle of attack. (See eq. (21) and fig. 21(c).) At higher lift coefficients

(CL/A > 1) the lift coefficient is affected and because of the dynamic-pressure correc-

tions, is generally increased. The effects on the drag-lift ratio are considerably more

severe even at fairly low values of CL/A, and the corrected drag-lift ratio may be as

much as 20 percent greater than the observed drag-lift ratio for conditions less severe

than Rae's flow-breakdown limit (ref. 10).

In the case of powered-lift testing, it is generally desired to set some equivalent

steady-state flight condition with a given lift, with zero net horizontal force, and with

some given value of an operating parameter which may, in turn, be defined in terms of

either forward velocity (for example, tip-speed ratio for a helicopter) or dynamic pres-

sure (for example, thrust coefficient for a tilt-wing aircraft). The alterations in qc,

Vc, _c, CL c and CDc implied by figures 21(c) and 68 combine to make it extraor-

dinarily difficult to set such a predetermined condition as a single test point in a wind-

tunnel investigation. It may be necessary to do considerable interpolation between a large
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number of corrected test points in order to obtain the desired information. If the correc-
tions are sufficiently large, the test engineer may evenbe embarrassed by finding that the
conditions which he set in the tunnel were not sufficiently broad to cover the corrected
flight condition for which he required experimental data.

Corrections at tail.- The corrections at the tail display the same general character

as those at the wing when the lift coefficients are moderate, and are also generally greater

for greater values of D/L. At the more extreme lift coefficients there is generally a ten-

dency for the sign of Ai t to reverse; that is, Ai t tends to become negative for extreme

whereas it is always positive at low CL/A.
$

conditions

Examination of the longitudinal distribution of interference factors in reference 7

indicates the reason for the behavior of Ai t. For the hovering condition where X = 0°,

the peak vertical interference occurs at the model and as × increases the location of the

peak interference shifts to ever greater distances behind the model. Now Ai t is the

difference between the interference at the location of the tail and the interference at the

location of the wing. Thus, if the effective wake skew angle is large enough to place the

maximum interference behind the tail, Ai t will be positive. Once the point of maximum

interference moves forward in front of the tail, Ait will decrease. Further forward

movement of the point of maximum interference will eventually, at some small wake skew

angle, lead to a condition where the interference at the tail is less than that at the wing

and Ai t will become negative. When dealing with a tail length proportional to span, such

effects become very predominantly a function of span. A somewhat altered effect might

have been obtained if the tail corrections had been computed at a constant distance behind

the wing. (See, for example, fig. 21 of ref. 8.) It will be noted that this change in sign

of Ai t generally occurs for conditions above Rae's flow breakdown limit; thus, generally

speaking, it will have no significant effect on valid V/STOL data for the classes of model

considered herein.

The classical corrections in the closed tunnels appear to be a weak function of angle

of attack for the tail length considered herein. Again at low CL/A the classical correc-

tions correspond fairly well with the present results at D/L = 0. The correspondence is

generally best in the wide tunnels and when the classical corrections are computed at the

same angle of attack (200). It will be noted that, in general, this correspondence between

classical corrections and the present work weakens at lower lift coefficients than in the

case of the average corrections.

The dynamic-pressure ratios qt/qc are a complex mixture of effects caused by

lift and by drag and at the model and at the tail. At low lift there is generally a small

decrease in effective tail efficiency; however, sufficiently large drags will reverse this

effect. The indicated dynamic-pressure ratios well above Rae's breakdown limit show

extreme increases in tail efficiency.
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Corrections to tail-caused pitching momentshavea general reputation of being

inherently less accurate than corrections to the lift, drag, and angle of attack. There are

many reasons why this should be so. First, there is a smaller region of correspondence

between the usually used conventional corrections and those predicted by the more com-

plete theory. The differences between the two theories increase significantly for the large

drags which are associated with large lift coefficients for conventional unpowered models.

The upwash created by the tunnel boundaries also influences the wing wake and displaces

it to a higher position with respect to the wake in the tunnel than in free air. The direct

effect of the altered wake location may be quite large. (See ref. 33.) Finally, the distri-

bution of vorticity within the wake may be significantly altered by the distribution of inter-

ference across the span of the wing which will be discussed next.

Nonuniformity of corrections.- The distribution of interference over the span of the

model is very nonuniform if the span of the model is a significant fraction of the tunnel

width and this nonuniformity becomes even greater as the sweep angle of the wing

increases.

The magnitude of this nonuniformity of interference is shown in a later section to be

one of the most severe limits on the usable testing range of a given wind tunnel. It is also

a significant limit on the validity of the present charts when applied to extreme conditions.

The present charts are all obtained on the basis of an assumed uniform spanwise distribu-

tion of lift and induced drag. (The one sample of average corrections for a rotor differs

in that it assumes a uniform distribution over the area of the disk.) Undoubtedly, some

peculiar distribution of chord and twist could be obtained which for, at least one condition,

would result in this uniform loading. On the other hand, the tunnel constraints impose an

alteration of the local loading through the medium of nonuniformities in the wall effects.

It is obvious that in the face of the extreme nonuniformities of wall effects indicated herein

(for example, fig. 27(e), where Aiw ranges between -50 ° and 90 °, and where Aq/qc

ranges between -0.5 and 2.0) that the load distribution across the span will be altered

violently. The altered load distribution would, in turn, change the interference distribu-

tion and the entire cycle would then repeat. Presumably, for some specified constant

planform, such effects could be computed by some iterative cycle; however, the required

computer time might be excessive for routine application and the resulting corrections to

the load distribution might be large enough to overpower the measured data. In any event,

even if desired, such calculations would be excluded from the present study in which the

model can assume almost any form, powered or unpowered, subject only to specified rela-

tive size and sweep. The foregoing comments apply equally well to the previously dis-

cussed charts giving average corrections and corrections at the tail since a radically

altered load distribution will affect such charts as well as the charts of nonuniformities.

In most cases, Rae's flow breakdown limit eliminates consideration of test conditions

at which the worst nonuniformities are encountered. However, even below this limit,
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clearly excessivenonuniformities may exist. For example, consider figure 27(e)where
differences of 20° in incidence with local gradients of 50° per semispanare predicted at
conditions less severe than l_e's limit.

A fewbasic conceptswill help to explain the somewhatinvolved character of the non-
uniformity of corrections. First consider an unsweptwing. In hovering where the wind-
tunnel interference is much the same as the groundeffect (refs. 5 and 7), the interference
is primarily causedby the floor of the wind tunnel if the tunnel width-height ratio is rea-
sonably large. It is less true in narrow tunnels where the walls have stronger effects.
The maximum vertical interference, at least for the uniform loadings considered herein,
will occur under the center of the model and the interference will diminish as the lateral

distance from the center of the model increases. Thus, for conditions at, and near,
hovering Ai w should be negative at least for wider tunnels.

As the skew angle increases, the effect of the walls increases. When the wake

passes directly rearward (× = 90°), the effect of the walls will predominate if the span of

the model is large or if the width-height ratio is small. (Observe, on page 193 of refer-

ence 34, that the effect of the walls at × = 90 ° will dominate the interference at a very

small model if the width-height ratio is less than _'2, but that the combined effect of floor

and ceiling is greater than the effect of the walls for 7 > _'2. Increasing the span, of

course, will bring parts of the model closer to the walls and increase the effect of the

walls.) The presence of the walls at high skew angles results in a strong upwash which is

stronger locally as the tips of the model approach the walls. Under these conditions the

interference is greater at the extremities of the model and Ai w becomes positive.

These trends may be observed in the charts pertaining to unswept wings. For small

models in wide tunnels, where the floor of the tunnel is always the predominant cause of

interference, Ai w may always be negative. In the very deep narrow tunnels, where the

walls tend to predominate, Aiw is often always positive. For large spans in moderately

wide tunnels it is found that at high skew angles the walls have the larger effect and thus

produce a positive Aiw, but that as the lift coefficient increases, reducing the wake skew

angle, Aiw changes in a relatively complex manner until it finally becomes negative.

This balancing of effects can result in large regions of the chart in which the nonuniformity

of correction is remarkably small for a straight wing (for example, fig. 24(d)) even though

the span may be quite large relative to the wind-tunnel width.

For very large span-width ratios, the lateral tips of the model are very close to the

walls. The strong local effect of the walls produces very large effects near the wing tips

that result in a wall-induced kink in the interference distribution. In the charts this effect

shows as large positive values of dAiw/d(y/s ) and it may achieve extremely large values

even at relatively small lift coefficients. The existence of this local effect at the tip is,
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of course, the reason why conventional wind-tunnel procedure is to limit model spans to

less than three-quarters of the wind-tunnel width.

If the wing is swept back, the tips will be well behind the lift-producing regions at

the center of the wing. Tllus, the downstream growth of interference (discussed previously

in relation to the tail) tends to assume great significance. This effect increases substan-

tially the interference at the wing tip. Even for wing sweep angles as small as 15 o, the

downstream growth of interference is significant in the interference distributions. Thus,

Ai w is almost always positive (wash-in) for the swept wings (except at extremely

small X) and it is almost always much greater than that obtained for an unswept wing

under the same circumstances.

If conditions are such that the range over which an unswept wing may be tested is

limited by the nonuniformity of interference over the span, the present charts indicate that

a swept wing of the same span should be confined to much more restrictive limits. This

effect has been observed experimentally. In terms of Aot, reference 4 has observed that

tests of highly swept wings should be confined to a maximum Aot of about 3//4 ° rather

than 2 ° when using conventional correction techniques. This markedly smaller value

of As will confine testing to smaller CL/A and will result in a consequent reduction in

the nonuniformity of interference.

The differences in dynamic pressure across the span also display different behavior

with sweep. However, large values of Aq/qc do not usually seem to appear unless asso-

ciated with large values of Z_iw or its gradient. Thus, testing will seldom be limited by

consideration of the interference effects on the distribution of dynamic pressure across

the span.

The conventional corrections once more are found to lead to approximately the cor-

rect order of nonuniformity at D//L = 0 for small CL/A. However, in certain cases,

because of the varying importance of walls and floor, conventional corrections may lead to

grossly different results at larger values of CL/A.

Approximate treatment of nonrectangular tunnels.- As noted in an earlier section of

this paper, the two NASA full-scale tunnels each have been treated herein on the basis of

presenting results for a rectangular tunnel of equal average width. Since no theory equiv-

alent to that of references 5 to 8 exists for these tunnel configurations, it is not possible to

assess fully the effect of the approximation.

Reference 31, however, does present a method of treating such tunnels when the

wake is undeflected (× = 90 °) as in conventional theory. In essence, this method consists

of replacing the wind-tunnel boundaries by a grid of rectangular vortex lines of unknown

strength lying on the actual contours of the tunnel. The resultant of the velocities induced

by both the model and the walls is then computed in terms of the unknown vortex strengths
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at an equalnumber of control points. Theseequationscan be solved for the unknown

strengths by using matrix techniques, and finally the interference factor is calculated by

using the vortex strengths obtained from the matrix inversion.

The wind-tunnel configurations of interest in the present paper are not included in

the numerical results represented in reference 31; however, Paul M. Reeves and Robert G.

Joppa of the University of Washington have graciously provided the appropriate numerical

results for the closed tunnel. These results are presented in figures 69 and 70 where they

are compared with the equivalent interference factors of reference 8 for rectangular tun-

nels having width-height ratios of 1 + _/4 and 2.

Figure 69 indicates that the quasi-elliptical shape of the round-sided tunnel results

in a slightly lower interference factor than does either of the rectangular tunnels. The

rectangular tunnel of the same average width provides a closer approximation to the

desired result for spans of less than one-half the tunnel width Ca < 0.5), but the rectangu-

lar tunnel of equal width is closer for spans larger than this.

The reason that the tunnel of equal average width is less representative at large

spans is evident in the spanwide distribution of figure 70. It is evident that the fore-

shortened width overestimates the interference near the tip, primarily because the

"effective" side boundary is closer to the tip than the actual boundary is. Although not as

evident in figure 70, close examination shows that the distributions for small spans are

somewhat less nonuniform for the rectangular tunnel of equal width.

The results presented in figures 69 to 70 apply only to the case of vanishingly small

lift and do not necessarily apply to large lift coefficients. It will be observed that when

the floor is close to the model (large _), only modest vertical deflection of the wake is

required to produce large increases in interference. When the span of the wing is suffi-

ciently great to overhang the curved sidewalls, the local distance to the "floor" is

decreased. Thus, a round-sided tunnel such as this probably will show an exaggerated

effect of wake deflection on the nonuniformity of corrections.

Closed-on-Bottom-Only Tunnels

Average corrections.- The average corrections for the tunnels which are closed only

on the bottom (figs. 44 and 50) display a totally different behavior than those of the equiva-

lent closed tunnels (figs. 15 and 21). This type of tunnel configuration is one of the classi-

cal "zero-correction" tunnels when the width-height ratio is 2 and the model is vanishingly

small and the wake is undeflected (× = 90o). (See ref. 35.) For the tunnels considered

herein, where the effective width-height ratios (_e = 1.947 and 1.5) are less than 2 and

where the model span is finite, conventional theory predicts a mild downwash (ref. 35, and

also ref. 5 when X = 900) •
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The theory of references 5 to 8 predicts that as the wake is depressed from the hori-

zontal, these tunnels should indicate upwash as the influence of the floor becomes greater.

Furthermore, significant effects of drag are predicted. Some of these trends are illus-

trated in figures 44 and 50. Because the vertical interference due to lift has such small

values at small lift coefficients, the correction angles _o_ tend to depend far more on

the drag-lift ratio than on CL/A. Negative drag (otherwise, forward thrust) results in an

induced downwash. Positive drag, if sufficiently great, results in an upwash. This effect

is not symmetric, however, because increases in span-width ratio or departures of the

width-height ratio from 2 do result in a downwash contribution from the lift forces.

For large spans, there is some correlation between conventional corrections and the

present results at D/L = 0 with small CL/A. (Presumably, if contours of sufficiently

small Aot were presented, there might also be some correlation when the span is small.)

The change from downwash to upwash as the skew angle is decreased may lead to extreme

disagreement at high CL/A. It is further obvious that a model following the curve labeled

"unpowered wing" in figure 1 will see correction angles which bear little or no relation-

ship to those predicted by conventional theory.

The corrections to dynamic pressure generally result in a reduction in the corrected

dynamic pressure. The effective reduction is substantially greater than that in the equiva-

lent closed tunnels. (Compare figs. 21 and 50.) For some extreme conditions, well

beyond Rae's limit, the corrected dynamic pressure is predicted to be near zero. Such a

tremendous correction is not likely in practice since the model forces would, of course,

be drastically altered by such a major change.

Corrections at tail.- As in the case of the closed tunnels, the angular corrections at

the tail are generally positive except at extreme wake skew angles. This result occurs

largely because of the assumption of a standard angle of attack of 20 °. Positive angles of

attack result in lowering the tail so that it is closer to the closed floor. The fl'oor, being

closed, produces an upwash interference which is greater as the distance from the floor

decreases.

Because the upper and lower boundaries of these tunnels are of opposite character,

it should be anticipated that the angular corrections should show a pronounced dependence

on the angle of attack. This dependence is evident in the auxiliary scales which indicate

the conventional corrections. The dependence of the corrections on angle of attack per-

sists throughout the entire range of wake angles. (See, for example, fig. 23 of ref. 8.)

Because the "upwash" interference increases with angle of attack, these tunnels will gen-

erate much larger corrections to static margin than will closed tunnels where the interfer-

ence is almost independent of angle of attack.

Corrections to the dynamic pressure are mild for conditions below Rae's limit. In

this region, there is often a small increase in the effective tail efficiency factor.
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N onuniformity of corrections.- The nonuniformity of the corrections over the span

shows a strong dependence on the drag-lift ratio. The nonuniformity is generally in the

nature of an induced washout; that is, Ai w is generally negative. Sufficient forward

thrust, if the model is reasonably large, will actually reverse the sense of the nonunifor-

mity because of the action of the interference due to drag.

In these tunnels the effect of the open sidewalls is that of an increased downwash.

Thus, there is no balancing of the effects of the floor and the walls. These effects are

generally additive. Thus, the nonuniformity over unswept wings does not display the pecu-

liar behavior indicated in the closed tunnels which for that configuration, led to very small

nonuniformities for unswept wings. In the present case, the nonuniformity becomes

greater as the span becomes greater, and the nonuniformity over unswept wings is rela-

tively worse than that in the corresponding closed tunnel.

The downstream growth of interference again results in greater nonuniformity as

the wing sweep increases. However, the interference in the closed-on-bottom-only tun-

nels grows more slowly with distance downstream that in the closed tunnel. Thus, the

nonuniformity does not increase as rapidly with wing sweep in these configurations.

Conventional corrections yield approximately the correct values at D/L = 0 if the

lift coefficient is small enough. On the other hand, if the model span is small in relation

to the tunnel width, this agreement may not be obvious, for the nonuniformity only becomes

to show for conditions of large CL/A. Once again, however, the changes inlarge enough

nonuniformity with drag-lift ratio are sufficiently large to indicate that the use of conven-

tional corrections could lead to rather optimistic results for a model such as the "Unpow-

ered wing" of figure 1.

In general, the contours of Aq/q c do not achieve values large enough to be trouble-

some within the usable testing range of the tunnel. Large values of dynamic pressure non-

uniformity are, in general, only encountered in the presence of prohibitive angular

nonuniformities.

Closed- on- Bottom- Only Tunnels With

Variable Model Height

Reference 19 indicates the possibility of designing certain closed-on-bottom-only

tunnels in which the corrections could be minimized by varying either the width-height

ratio or the model height as a function of the wake skew angle. One recent tunnel, the

Langley V/STOL tunnel has been designed so that such operation with variable model

height is possible. Consequently, this configuration has been treated herein in a manner

identical to that of the preceding configurations. The one alteration is that the model
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height is now subjected to the schedulerequired by the computer programs of refer-
ence 19. Theseprograms, in essence,are equivalent to the more general interference
programs of reference 18except that before computingthe interference, the computer is
first required to search at each ×e for the modelheight which reduces 5w,L, andthus
AWL, to zero.

Average corrections.- The required schedules of model height, shown in figure 56,

result in the corrections shown in figure 57 for a tunnel having a width-height ratio

of 3/2. The effect of the variable model height may be seen by comparing figure 57 with

figure 50 which considers the same tunnel configuration with a centered model.

The result of the foregoing comparison is somewhat disappointing. The primary

effect is, in essence, to straighten out the As = 0° contour so that it lies along D/L = 0.

Because of the corresponding changes in the drag components of interference, AS and

qc/q may actually increase for drag-lift ratios other than zero. Indeed, for a model

following the "Unpowered wing" curve of figure 1, the interference may be increased

substantially.

The more rapid decrease in qc/q is partially a result in the reduction of Aw L

as may be seen from equations (16) and (20). When the span-width ratio is large, this

effect can lead to an indicated complete reversal of the flow with a singular point of zero

(See fig. 57(c), and particularly note the indicated singular point atdynamic pressure.

D/L=0 and CL/A= 7.)

Although this technique may be of value if the drag-lift ratio is near zero, such as it

might be for a lifting rotor, it is obviously not of general utility. Reference 19, however,

suggests an alternate possibility of choosing the model height so that AW = 0, that is, so

that

5w,L + D 6w,D = 0 (41)

Under such conditions, with the total vertical interference velocity equal to zero, A_

must be zero, or if the horizontal interference is sufficiently great to reverse the flow at

the model, A_ = 180 o.

The required schedules for this type of operation are given in figure 61. At low lift

coefficients the required model height is primarily a function of drag-lift ratio; however,

at extreme lift coefficients the schedule tends to become more nearly a function of wake

skew angle. (Compare fig. 61 with fig. 1.) This general trend would be expected from the

average corrections when the model is centered. (See fig. 50.) The required schedule

indicates the need for model heights very close to the tunnel floor when the drag-lift ratio
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becomesnegative. This restriction is a marked disadvantagein several respects. The
most obviousof thesedisadvantagesis with respect to Rae's limit, which is lowered sub-
stantially for suchconditions.

If thedrag-lift ratio is less than about -0.5, there is no model location which will
satisfy equation(41). This observation is true for all span-width ratios. A brief exami-
nation of other width-height ratios (fig. 65) indicates the same result. Indeed, in some
cases, valuesof D/L in excessof about 0.8 lead to a similar problem (fig. 65(b)).

With Aw = 0, as noted earlier, and as shown in figures 62 and 66, As is indeed

zero throughout the region below Rae's limit. At much higher lift coefficients, where the

flow at the model becomes reversed, AS discontinuously changes to +180 °. The effect

of interference on qc/q becomes even greater as might be expected from the complete
elimination of AW in equation (20).

Corrections at tail.- Either form of variable-model-height tunnel leads to some

reduction of Ai t for positive drag-lift ratios (compare figs. 51, 58, and 63); however, at

negative drag-lift ratios, Ai t may be increased. This latter increase may be large when

operation for AW = 0 (fig. 63) is chosen because of the very low model heights required

at negative drag-lift ratios. The increases in boundary-induced tail efficiency are notable.

Nonuniformity of corrections.- Examination of the charts related to the nonunifor-

mity of corrections (figs. 59, 60, and 64) indicates that the effect of variable-geometry

operation of these tunnels is relatively small. When compared with the same _unnel with

a centered model (figs. 52 and 55), the nonuniformity is slightly reduced for positive drag-

lift ratios and it is somewhat increased for negative drag-lift ratios.

ESTIMATION OF LIMITING VALUES OF INTERFERENCE PARAMETERS

General Considerations

Of all the terms herein relating to wind-tunnel boundary effects, the only one that

appears explicitly as a limit is Rae's flow-breakdown limit. (See ref. 10.) Inherently,

this limit is a statement that beyond this point extraneous influences present in the tunnel,

but not in free air, will seriously affect the data. Actually all the other terms presented

in the foregoing charts pose limits to testing equally as well as does Rae's limit. How-

ever, the actual limiting values can be chosen only after consideration of the consequences

on different models of differing levels of each of the various parameters.

It is necessary in order to proceed further to choose some such set of limits. It is

recognized that the particular values used may differ for different models; however, the

present choices are based on values that might be appropriate to a wing or at least a

'_ving-like" model.
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Thebasic principles involved in choosinglimits are at least twofold. First, if it is
desired to ignore a particular interference parameter in correcting the data, then the
maximum value of that parameter must be chosensmall enoughto insure that it will not
have a major influence on.the final data. Second,the maximum allowable values of each
parameter shouldbe chosento besufficiently small to insure that the corrections for it
will not be greater than the effect of reasonablevariations in the model itself. To accept
larger values would inherently make the corrected data more nearly a function of the theo-
retical calculations than the product of measurements. In cases where the experimenter
possessedthat great a level of confidencein theory, he would bewell advised to save the
time, trouble, and expenseof wind-tunnel tests.

The actual values chosenunder theseguidingprinciples will dependultimately on
how much effort one is willing to put into correcting his data. The next several para-
graphswill discuss possible plausible limiting valuesof the interference parameters at
three different levels of applied corrections. Thesethree levels are recognizedas
ranging from more rigorous to less rigorous than those typically employedas current
wind-tunnel practice.

Maximum Practical Corrections

Even when employing the maximum practical level of corrections, it will be found

appropriate to accept some limit on the average corrections because excessive values

will make it exceedingly difficult to set the desired flight conditions in the tunnel. Actu-

ally, experimental studies, such as those of references 11 to 13, seem to indicate that AS

values on the order of 5 ° and dynamic-pressure corrections on the order of 10 percent of

free-stream dynamic pressure are acceptable. These values are accepted here.

Once the maximum level of the average corrections is determined, one must then

deal with different types of nonuniformity over the model. It has been observed earlier

that large values of Ai t introduce uncertainty into moment corrections because of

induced camber and wake relocation effects. Thus, a rather arbitrary limit of 5° might

be imposed on Ai t. It is desirable not to mask the usual values of tail efficiency factor

(on the order of qt/q= 0.9) so that qt/qc should most likely be limited so that the effec-

tive dynamic pressure at the tail is altered from the corrected dynamic pressure by no

more than 10 percent. Correction limits this large will undoubtedly require at least ele-

mentary estimation of the effect of interference on the actual wake location at the tail.

The span-load distribution over the wing and its consequent effect on pitching

moment for swept wings could probably be corrected for by the application of known

lifting-line or lifting-surface techniques. As an upper limit it would be desirable not to

mask the built-in wing twist which is likely to be on the order of 2 ° . Local kinks of span-

wise loading may be acceptable up to a larger value, a local gradient of, for example, 5°
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per semispan. Certainly some limit, for example, 10percent, should be imposedon the
dynamic-pressure difference over the spansince the local loading would be expectedto
vary almost linearly with the local dynamic pressure.

An excellent casecould be made for imposing more stringent limitations on the non-
uniformity for highly sweptwings since their greater longitudinal extentwill result in
more significant effects onpitching moments. This procedure is not followed herein for
the reasonthat there havebeenso few attempts actually to apply corrections to spanwise
loading that the limits of application as affected by sweepangleare essentially
indeterminate.

The foregoing limits are summarized in table II(a).

Moderate Corrections

Thedegree of correction typically employedas current practice involves a much
smaller emphasison the nonuniformity of interference than is implied in the preceding
discussion. Consequently,smaller limits on the interference parameters may be
required.

Theaverage interference factors may be takenas havingabout the same limiting
values as before. Thesevalues are used primarily for easeof setting wind-tunnel condi-
tions andthe values used in the preceding discussion wouldbe relatively unaffected.

Current practice in correcting pitching momentsoften neglects tail location as a
function of angle of attack, often omits induced camber effects, and almost never considers
wake relocation causedby the boundaryinterference. Thus, the tail-related interference
parameters must be somewhatmore restrictive. Values of Ai w of 2 ° and dynamic-

pressure differences of 5 percent are chosen somewhat arbitrarily herein.

At the present time the spanwise load distribution is hardly ever considered in cor-

recting wind-tunnel data. Thus, the limiting values of those parameters must be greatly

reduced so that their effects will not compromise the final data. Suggested values, used

in the present study, reduce Ai w to a maximum of 1/2 ° with a local spanwise gradient

of 1° per semispan. Concurrently, the maximum spanwise difference in dynamic pres-

sure is reduced to 5 percent.

The foregoing values are summarized in table II(b).

No Corrections

If the model is sufficiently small with respect to the test-section dimensions, the

data may be satisfactory without applying corrections. Indeed, the data from certain

wind tunnels which specialize in crude "first-look" studies may be uncorrected even when

the model is relatively large. The absence of corrections, however, implies that testing
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should be limited to maximum values of the interference parameters which are signifi-

cantly smaller than those which are appropriate when corrections are applied.

The values chosen for the nonuniformity of corrections when using moderate correc-

tions are sufficiently small so that they probably apply equally as well when no corrections

are employed. However, it will be necessary to reduce significantly the tolerances on the

average corrections and on corrections at the tail. For the present purposes both Aa

and _i t are chosen to have limiting values of 1/2 ° and both qc/q and qt/qc are cho-

sen so that the corrected qc and qt will be within 5 percent on the nominal measured

tunnel dynamic pressures. The use of limits this stringent will most likely be adequate
if only the lift _L plotted against _) is considered; however, the accuracy of dragcurve

and moments will probably suffer when compared with corrected data.

The foregoing values are summarized in table H(c).

It will be observed that all the foregoing limits have been chosen on the basis that

the model is "wing-like" or has "wing-like" characteristics. Many models do not possess

this type of aerodynamic behavior. For example, centrally hinged helicopter rotors are

essentially unaffected by longitudinal interference gradients (except for a small lateral

tilt of the tip-path plane), and generally tend to average out lateral gradients to a marked

degree. On the other hand, a so-called "rigid" (or hingeless) rotor might be so sensitive

to longitudinal gradients that even more restrictive limits would be required for wind-

tunnel tests. The present results are intended only to be illustrative of the general tech-

niques. The actual limits for a given class of model can only be determined by a con-

sideration of the effect of the different interference parameters on that particular class of

model.

TESTING LIMITS IN WIND TUNNELS

Charts of Testing Limits

Once tolerances have been specified on the individual interference parameters it is

possible to specify testing limits in terms of a maximum CL/A for a given value of

D/L. These testing limits are found by superimposing the contours corresponding to the

limiting values of each of the individual parameters on a single chart. Such a chart is

specific, of course, to a given span of model, having a given wing sweep, in a test section

of given size and proportions. A sample of such a chart is presented in figure 71 for

wings of 0 ° and 45 ° sweep which span half the width of a tunnel having a width-height

ratio of 2/3.

In all cases, the maximum lift coefficient at which the model can be tested is deter-

mined by a line which is defined at each value of D/L by the smallest CL/A defined

by the tolerances allowed by the degree of correction employed (in fig. 71, by table II).
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The limiting parameter may vary according to the drag-lift ratio; for example, in fig-

ure 71 as the drag-lift ratio increases from -1.0 to 1.0, testing of an unswept wing is lim-

ited first by excessive values of qt/q, then by excessive values of An, and finally by

Rae's limit (xf/b = 1.25). The testing limits may also be affected by sweep angle; for

example, in figure 71 the testing limits for a wing with 45 ° of sweep are defined by Ai w

for -1.0-<_ D/L < 0.4 instead of by qt/q c and An as for the unswept wing.

It should be observed that testing limits defined in this manner are highly dependent

on the previous choice of limiting values of each interference parameter. However,

relaxing the tolerance on a single parameter may not produce a proportionate increase in

limits. For example, in figure 71, even if Rae's limit _-(xf/b = 1.25) were totallytesting

ignored, the overall test limits would change only slightly. The limit at large D/L

would be replaced by a limit on An at almost the same values of CL/A. Indeed, fig-

ure 71 is not typical of many of the test limits presented herein. This particular case

was chosen primarily because the various limits were widely spaced on the chart and thus

the sample could be more easily scanned. In general, the limiting lines corresponding

to the individual interference parameters tend to group together more closely than in

figure 71.

The presentation of testing limits is made considerably more compact by displaying

only the lowermost limiting values rather than all the limiting values. This presentation

has been made for the three levels of correction considered in table II. The results

for the closed tunnels are presented in figures 72 to 74; those for the closed-on-bottom-

only tunnels with centered models are presented in figures 75 to 77; and those for the

variable-model-height tunnels are presented in figures 78 to 80. In each case, the partic-

ular interference parameter responsible for each segment of the limit is indicated by a

symbol.

When the maximum practical corrections are applied, it will be observed that Rae's

limit is the primary limitation on testing models of relatively small span-width ratio. As

the model span increases, the longitudinal and lateral interference distributions tend to

become far more restrictive and these latter terms overpower all else for the largest

span-width ratios. The average correction angle AOt is notable by its absence as a

limit except in the narrowest tunnels considered. When moderate corrections are applied,

the increased emphasis on the lateral distribution produces significant reductions in the

testing limits and markedly increases the effect of wing sweep on these limits. If no cor-

rections are applied, the limits are found to be primarily determined by An and Ai t.

Effect of Correction Level on Testing Limits

Few effects shown herein, other than major changes in the relative model and tun-

nel sizes, are more significant than completeness of corrections in determining testing
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limits. A sample comparison, for a model spanninghalf the width of a closed tunnel
havinga width-height ratio of 3/2, is shownin figure 81. Here it is seenthat using the
maximum practical corrections increases the allowable maximum lift coefficient by as
muchas a whole order of.magnitudeover tests with no corrections applied. This differ-
encemay be translated directly, althoughnonlinearily, into an increased model size. For
example, the testing limit shownfor no corrections in figure 81 for cr= 1/2 is of the

same general level as that shown in figure 72(d) for the maximum practical corrections

when (r = 5/6.

APPLICATION TO MODEL DESIGN

The most difficult choice in the preliminary planning of a wind-tunnel test is the

scale to which the model is to be built. Even for relatively conventional unpowered

models, the effects of Reynolds number will dictate some minimum size of model. The

effects of Reynolds number indicate the need, in general, for still larger models of pow-

ered aircraft since it will be necessary to maintain reasonable Reynolds numbers over

items such as propeller and rotor blades and over various flow-turning devices such as

control vanes. In addition, requirements of power and physical size on the drive systems

of powered-lift models may set some severe physical restraints on the minimum size to

which the model can be manufactured. These requirements are all related to the model

itself, and the selection of minimum size may be dependent largely on the mechanical

ingenuity of the model designer.

On the other hand, the maximum size of the model depends largely on the interfer-

ence created by the boundaries of the test section in which the model is to be tested and

upon thedegree to which the data will be corrected. In some cases, the level of correc-

tions applied to the data may be an option solely of the experimenter. More likely, how-

ever, this choice will depend upon the options available as standard data-reduction pro-

cedures in the possible tunnels in which the model might be tested. In such cases, it may

turn out that the allowable maximum model size is more nearly a function of the diligence

of the tunnel staff in correcting data than it is a function of the proportions or even the

size of their wind tunnel.

Once the tunnels which might be available for a given test and their correction pro-

cedures are known, it is relatively simple to scan the test limit charts of figures 72 to 80

in order to determine whether any of the available tunnels are suitable for testing the

model at minimum (or greater) scale over the anticipated range of lift and drag coeffi-

cients. Usually the total cost of the model and the test will be a minimum for the small-

est practical model in the smallest and least sophisticated tunnel. In general, the test
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shouldbeplannedfor the minimum cost consistent with gooddata; however, it is recog-
nized that cost may be dependentgreatly uponwho owns the tunnel andwho is sponsoring
the research. Theselast factors may havea substantial impact on the final choice.

If it turns out that noneof the available tunnels is capableof testing the complete
minimum model throughout the required range of lift and drag, it may still be possible to
use one of these tunnels for tests of a semispanmodel of the equivalent sameminimum
model. It was noted earlier that such information for semispan modelswas present within
these charts by considering both the real model andtunnel together with their reflection
images asindicated in figure 6.

Whenmounting configurations other than the normal full-span arrangement are con-
sidered, theappropriate tunnel width-height ratio and span-width ratio vary according to
the mountingconfiguration. In such cases, it is usually advantageousto work in dimen-
sional terms rather than in the nondimensionalterms used heretofore. Several sample
cases, pertaining to models of constant full spanin wind tunnels with test sections of
2 x 3 meters, 2 x 4 meters, and 2 x 2 meters are presented in figures 82 to 88. In gen-
eral, it will be seenthat semispan tests, particularly whenthe semispan is perpendicular
to the floor, do permit an expandedtest range, or, conversely, somewhatlarger equivalent
full spans. This observation is particularly true whenconsidering models with highly
sweptplanforms for which the data are corrected with "moderate" corrections.

Factors other thanwall interference must be consideredin choosinga semispan
model. Suchmodels cannotbe tested in yaw or roll to obtain lateral-directional stability
data. Theboundarylayer on the wall may affect the data since it is now in the plane of
symmetry of the equivalent full-span model. On the other hand, the complexity and cost
of powered-lift models can beapproximately halved if it is necessary to build only a single
semispan. Onbalance,however, the full-span model is generally preferable if considera-
tions of modelcost or available tunnel size do not intervene.

APPLICATION TO WIND-TUNNEL DESIGN

Thedesign of a wind tunnel is predicated on many factors, not all of which may be
determined with any real degreeof precision. The required speedrange of the tunnel and
its size maybe determined by the needto fill voids in the testing capability of other
existing facilities. These requirements in themselves may be modified to a great degree
by limitations in cost or in available power. Within suchboundssome estimate must be
made as to the type, size, andperformance range of the models that will be tested through-
out the useful lifetime of the tunnel. Since this lifetime may, in somecases, exceed
40 years, the design must proceed on the basis of subjective extrapolations to the tech-
nology thatwill exist long after the designer has retired.
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Within suchbounds,there is no truly optimum test-section or wind-tunnel design;
however, the design must at least proceed onsomerational basis. The present system of
charts and limits at least provides a meansfor a reasonableconsistent comparison of dif-
fering test-section designs.

Choice of Tunnel Size

The present charts can be used to provide some estimate of the minimum dimen-

sions of the tunnel. This problem is recognized as the inverse of the problem just dis-

cussed, namely, that of determining the maximum dimensions of a model for a given wind-

tunnel test. The difference is in the depth to which the study must be carried, for now a

whole range of model sizes, model performances, tunnel-boundary configurations, and

model mounting possibilities must be considered. The considerations discussed in both

the preceding sections and those sections to follow adequately encompass the problems of

choosing the overall tunnel size; thus, no additional discussion is presented at this point.

Choice of Type of Boundaries

One of the early design decisions is the type of boundaries to be used in the test sec-

tion. This choice will be influenced to some degree by practical considerations. It is

generally simpler to arrange a tunnel for extensive flow-survey or flow-visualization

studies if most of the boundaries are open, and access to the test section for model

mounting is simplified. On the other hand, it is easier to obtain a smooth flow with no

pulsations and an essentially zero longitudinal static-pressure gradient in a closed tunnel.

Other things being equal, the power requirements of a closed tunnel will generally be

somewhat less than those of an open tunnel.

As indicated in discussing the correction charts, the choice of boundaries will influ-

ence the wind-tunnel interference over the model, A good example of these effects may be

obtained by examining the testing limits for one model in the new Langley V/STOL tunnel

which has been arranged so that several different types of boundaries can be used. Among

these configurations are both the closed and closed-on-bottom-only types treated herein.

Furthermore, a variable-height string mount is available in the tunnel so that the closed-

on-bottom-only configuration can be operated in the variable-model-height mode with the

available equipment.

A comparison of the testing limits for a model spanning half the tunnel width when

using these four options is presented in figure 89. All three levels of applied corrections

are considered.

When the maximum practical corrections are applied (fig. 89(a)), the testing limits

for centered models are about the same regardless of the type of boundary used. The use
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of variable-model-height operation is contraindicated by the greatly reduced testing limits

in this case. Reference to figure 78 indicates that the cause of this restriction is the

large effect of the boundaries on qc/q. This particular parameter could be compensated

for in some degree by providing the tunnel operator with a precomputed table of approxi-

mate compensating velocities as a function of CL/A. The use of such a table would

increase the allowable testing range in this mode of operation; however, the procedure

would substantially complicate the conduct of the test.

When moderate corrections are employed (fig. 89(b)), the comparison is quite differ-

ent and depends largely on the degree to which the wings of the model are swept. For

unswept wings, the limits are about the same regardless of the wall configuration; how-

ever, for highly swept planforms, the completely closed tunnel appears to have a more

restricted region of testing than any of the four cases considered. The penalties for

variable-model-height operation are relatively small in figure 89(b).

When no corrections are applied, as in figure 89(c), variable-model-height operation

is superior provided that the drag-lift ratio is greater than about -0.2. Philosophically,

figure 89 indicates that there is little point in trying to reduce corrections if one is willing

to accept large corrections. The effort only pays dividends when one is not willing to

apply corrections to his data.

Comparisons such as those of figure 89 imply that the design of the tunnel will

depend upon the extent to which the data from the tunnel will be corrected. The initial

design decision must be a commitment to a selected level of correction.

Another example of the effect of the type of boundary is provided by the Langley full-

scale tunnel. Although the tunnel was originally built as a completely open tunnel, it is

usually used at present in a closed-on-bottom-only mode for high-lift testing. This mode

is obtained by the use of a ground board which was described in an earlier section of this

paper. In the course of 40 years of operation, many modifications to the tunnel have been

proposed informally. One frequent suggestion has been to close the test section. The

effect of such a change is indicated for one span-width ratio in figure 90.

Figure 90 indicates that the testing range of this tunnel could be increased consider-

ably by closing the tunnel provided that the models had small sweep. However, for

modern planforms which tend toward 30 ° or more wing sweep, there would be little or no

gain despite the fact that the present tunnel has about 5 percent less useful area because

of the raised location of the ground board.

Choice of Test-Section Shape

The shape and proportions of the test section must also be chosen early in the design

of the tunnel. The present charts of interference and testing limits can also be used to
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provide guidancein this regard by comparison betweenvarious design alternatives. The
comparison cannotbe madeon the basis of equal span-width ratio models. The required
power and the cost of the tunnelwill dependlargelyupon the cross-sectional area of the
test section, whereas the models to be tested in the tunnel will remain fixed in span. As
the proportions of the tunnel change,the tunnel width for a constant cross-sectional area
also changes. Consequently,the span-width ratio for models of constant spanwill differ
in the tunnels of differing proportions or shape. Thetechniqueusedin comparing differ-
ent test sections shouldbe the sameas that used earlier in comparing the different
mountingpossibilities of a wing in a given tunnel. (Seefigs. 82 to 88.) In general, it is
simpler to work in dimensional terms rather than in terms of dimensionless ratios.

As an example, consider two different hypotheticaltest sections: the first has round
sidewalls and is 7.5 meters high and 15meters wide; the secondis completely rectangular
and is 8 meters high and 12 meters wide. Both tunnelsare closed.

The cross-sectional areas of these two test sections are roughly equal; the
area of the round-sided tunnel being only about 5 percent greater than that of the rec-
tangular tunnel. Now consider a series of wings havingconstant spansin the sequence
2, 4, 6, . . . meters. In the 7.5- by 15-meter tunnel the corresponding width-height ratios
from the sequence2/15, 4/15, 6/15, . . . and in the 8- by 12-meter tunnel the corre-
spondingsequenceis 1/6, 2/6, 3/6, . . . The appropriate testing limits from figures 72
to 74may thenbe traced to form the comparison shownin figures 91 to 93.

The comparison indicates that whenthe dataare corrected (figs. 91 and 92), there
is a small advantagein using the 8- by 12-meter configuration, but that there is a signifi-
cant advantagein using the 7.5- by 15-meter configuration when the spansare large. As
indicated by the results of the calculations from reference 31 (figs. 69and 70), this effect
is undoubtedlyreal despite the rather crude treatment of the nonrectangular tunnels in the
present paper. There might be somedoubt as to the adequacyof present theoretical treat-
ments of interference in applying corrections to thespanwisedistribution except for very
low-lift cruising conditions; however, the extensionof the techniqueof reference 31 to a
linearized deflected wake wouldnot appear to involve excessivedifficulty.

The comparison is altered somewhatif no corrections are applied (fig. 93). In this
case, the 8- by 12-meter tunnel is always at an advantageover the 7.5- by 15-meter tunnel.
The reason is simply that the use of uncorrected data restricts the allowable test range
so severely that it is not feasible to test the very large-span models.

In addition to the normal model mountingarrangements, the test sections should
also be considered in regard to semispanarrangements. Sucha comparison, which can
readily be scaled to thesedimensions, hasalready beenmade for the 8- by 12-meter sec-
tion. (Seefigs. 82 to 84.) The correctly scaled valuesfor the 7.5- by 15-meter tunnel

45



cannot beobtainedwithout interpolation from the present charts, although figures 85 to 87
provide someroughindication of the relative effects. A few general commentsare
appropriate.

For semispantests with the model mountedfrom the floor, the equivalent full tunnel
(real tunnelplus image)will be 15meters wide for the 7.5- by 15-meter tunnel and
16 meters wide for the 8- by 12-meter tunnel. For large span models, the effect of the
difference in width on thewidth-height ratio shouldput the 7.5- by 15-meter tunnel at a
disadvantagewith respect to the 8- by 12-meter tunnel. Furthermore, for small-span
models mountedin this manner, the equivalent full tunnel has a width-height ratio of about
one and theround endsare at least the equivalent of large fillets. For these small spans,
where Rae's limit is of paramount importance, this is about the worst possible configura-
tion (refs. 10and 25). Thus, the 8- by 12-meter tunnelwould be expectedto be a signifi-
cantly better choicefor semispan tests of this nature.

It is occasionally desirable for mechanical reasons to mounta semispanmodel from
the tunnel sidewall. There is no inherent difficulty in this procedure in the 8- by 12-meter
configuration; however, such tests in the round-sided tunnel present severe problems.
Undoubtedly,such tests would require the erection of a false wall located several meters
in from the tunnel extremity in order to simulate a reflection plane properly. Oneeffect
of such a wall is a substantial reduction in the active width and cross-sectional area of the
tunnel. The division of the flow betweenthe separate regions definedby the wall may
also present problems in measuring the correct dynamic pressure in the active region of
the wind tunnel. Sucheffects were found in reference 36, and were only eliminated
(ref. 10)by extremely long walls and the extensive use of shielded pressure probes within
the walls.

Althoughnot discussedspecifically herein, the tunnel with round endsalso presents
obviousproblems whenused to obtain ground-effect data. If the model has any significant
span, it is obvious that the floor of the tunnel is not sufficiently flat to be used to repre-
sent the ground. Thus, it will be necessary to erect a false floor abovethe bottom of the
tunnel. As in reflection-plane testing, this false floor reduces the effective area of the
tunnel andpresents difficulties in the measurementof the effective tunnel velocity. In
addition, a circulation aboutthe groundplane itself may be generated(ref. 37)and this
circulation may result in the needfor still further corrections.

In balancingthesevarious effects, the 8- by 12-meter tunnel would appear to be the
more versatile anddesirable of the two test sections since the only real advantage
accruing to the 7.5- by 15-meter tunnel involves models of extreme spanat near-cruising
lift coefficients. If the tunnel were to have two test sections, either in tandemor inter-
changeable,it might be desirable to useboth geometric shapes. The round-endedtunnel
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wouldbe very suitable as a high-speedsection intendedprimarily for the investigation of
high-speed low-lift testing whereas a scaled-up version of the rectangular section could
be utilized for low-speedhigh-lift testing. This typeof combinationwould tend to
emphasizethe desirable features of both combinations.

CONCLUDING REMARKS

This investigation has provided in chart form a means for rapidly estimating the

magnitude of the boundary interference to be expected in a given wind-tunnel test in tun-

nels whose test sections are closed or closed only on the bottom. In addition, possible

reasons for currently accepted limitations on wind-tunnel testing are indicated. Once

plausible maximum values are chosen for the various effects of boundary interference,

the charts may be used to define the range of lift and drag for which the wind tunnel may

be expected to yield usable results. Such charts of testing limits have been developed

herein. It is shown that models with significant wing sweep should be smaller than models

with unswept wings. Numerous examples of the application of the present technique to

model and tunnel design have been given. The degree to which the data will be corrected

has extraordinary effects on testing limits. A decision in this regard should be made

prior to the design of either a model or a wind tunnel.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., July 1, 1971.
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TABLE I

GUIDETO BASICFIGURESGIVINGCORRECTIONS

(a)Closed tunnels

Width -height
ratio

3

2

2*

3/2

4/3

1

2/3

1/2

Average
corrections

7

11

15

21, 22**

28

32

36

40

Tail
corrections

8

12

16

23

29

33

37

41

Nonuniformity of corrections

A=0 o A = 15°

18

25

A = 30 °

19

26

9

13

17

24

30

34

38

42

A = 45 °

I0

14

20

27

31

35

39

43

*With semicircular sides.

**For a rotor.

(b)Closed-on-bottom-only tunnels

Width-height
ratio

2*

3/2

Average
corrections

44

50

Tail
corrections

45

51

Nonuniformity of corrections

A=0 o

46

52

A = 15 °

47

53

A = 30 °

48

54

A = 45 °

49

55

*Langley full-scale tunnel.

(c) Tunnels with variable model height

Width-height
ratio

3/2

3/2

1 and 2

Operation
for zero

value of-

Aw L

Aw

Aw

Schedule of
model height

56

61

65

Average
corrections

57

62

66

Tail
corrections

58

63

67
1

Nonuniformity
of corrections

A = 0° A = 45°

59 60

64 ---

L
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TABLE II

TESTING LIMITS FOR "WING-LIKE" MODELS

(a) Maximum practical corrections

Parameter

Rae's limit

Aa, deg

qc/q

Ait, deg

qt/qc

Aiw, deg

Aq/q c

eg/semispan

Upper
limit

xf/b

5

1.1

5

1.1

2

5

.]

Lower
limit

-5

0.9

-5

.9

-2

-5

-.1

(b) Moderate corrections

Parameter

Rae's limit

Aa, deg

qc/q

Ait, deg

qt/qc

Aiw, deg

d (Aiw)/d(y/s) , deg/semispan

Aq/q c

Upper
limit

xf/b

5

I.I

2

1.05

1/2

1

.05

Lower
limit

-5

0.9

-2

.95

-1/2

-I

-.05
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TABLE II.- Concluded.

TESTING LIMITS FOR "WING-LIKE" MODELS

(c) No corrections

Parameter Upper Lower
limit limit

Rae's limit

Aot, deg

qe/q

Ait, deg

qt/qc

Aiw, deg

d (Aiw)/d(y/s), degfsemisPan

Aq/q c

1/2

1.05

1/2

1.05

1/2

1

.05

-1/2

0.95

-1/2

.95

-1/2

-1

-.05
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Tail length is three-fourths of wing span; tail height is zero; a = 200; A = 0o; y = 2.

102



CL/A

100

10

0

D/L

(b) o = 4/15.

Figure 16.- Continued.

Ai t

qt/qc

xf/b= 1.25

5 ii

50

20

7O

,t
_o

0 _

0

5

2 "-_.

3

o

1/2
¢-_
O

O

I/4

103



CL/A

100

I0

4--4J_+

-÷T:::

ILll

I I I

-;--4 ;

_;j J_

i i i

q-F1-

'4 o4..

0

D/L

, _ 4 t J

: : : : : :

!! !_-F

_q-I Tq-F

_r rt t _*

tI E i_1 i

i iLJii-

_ ,. : .r] -

"T--L: : ! '

Ai t

qt/qc

xf/b= 1.25

X = I0°

90

50 _

2-

<1

20 b°
Od

II

t:l

I0 -'-

e-

5 "-

¢-

2 o
°_
,,I,,-

e-

e-

Q

I o

I/2

(c) o = 2/5.

Figure16.- Continued.

104



CL/A

I00

10

.I
-I.0

(d) o = 8/15.

Figure 16.- Continued.

Ai t

qt/qc

xf/b= 1.25

X = I0°

9O

5O

2O

I0

5

2

I

I/2

1.0

t 90

<3

@" 50
0
II

-20

0

_. -I0
0

-6
e- _ 5
0

e"

e-

-2

-I

- I/2

<3

O _

0
0d

I!

¢-
0

0

o
c-
O

¢-
(1}

t-
o
o

105



CL/A

106

100

I0

0

D/L

(e) 0 = 2/3.

Figure 16.- Continued.

Ai t

qt/qc

xf/b= 1.25

X = I0°

9O

5O

2O

I0

5

1.0

e)

$.
._

<I

O P

0
I!

I=I

0

I/)
t-"
0

i,...
0

0
t-
O

,.l,-

t-
O

9O

5O

2O

10

5

"O

<_

O
oJ
II

U)
t-
O

O

O
t-
O

t-

t-
O
o



CL/A

I00

I0

0

D/L

(f) 0 = 4/5.

Figure ]6.- Concluded.

/ki t

qt/qc

xf/b= 1.25

X = I0°

Q)

"0

90 "-
<3

O _

so o,
u

.4--

D

z0 _

u
ID

_0 _

m

O
¢-

5 .9

cI)
>
t-
o
0

- 90

-50

-20

-I0

-5

-2

Q)
"0

4--
.w

<3
O_

o
OJ
II

o

o

(/)
t-
O

.m

o

o

o

0

e-

>
c
o
o

1"0'/



CL/A

I00

IO

-rlI
11i

_WH-!

L q i

i i i

H_

Z_i w

d Lliw/d(y/s)

L_q/q c

xf/b= 1.25

x=IO °

.I
-I.0 0 1.0

D/L

-I

!

-I/2

-1/4 a)
"10

<l-

C
0

.m

(J

I.

0

>
t-
O

_D

-2

C
0

U_

E

U_

-1/2 $
0.

G)

-114 "o

"0

<1
"0

C

0

L_

0
(.)

C

0
0_

C

e-
0

C.)

(a) o = 2/15.

Figure 17.- Nonuniformity of corrections over a uniformly loaded wing centered in a closed tunnel with semicircular sides.
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Figure 18.- Nonuniformity of corrections over a uniformly loaded wing centered in a closed tunnel with semicircular sides.
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Figure 19.- Nonuniformity of corrections over a uniformly loaded wing centered in a closed tunnel with semicircular sides.
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Figure 36.- Average corrections for a uniformly loaded wing centered in a closed rectangular tunnel. A = 0°; y = 2/3.
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Figure 37.- Corrections at a zero-span tail behind a uniformly loaded wing centered in a closed rectangular tunnel.

Tail length is three-fourths of wing span; tail height is zero; a = 20°; A = 0°; y = 2/3.
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Figure 46.- Nonuniformity of corrections over a uniformly loaded wing centered in the Langley full-scale
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Figure 67.- Corrections at a zero-span tail behind a uniformly loaded wing in a rectangular tunnel closed only on the bottom when the

model height is varied to maintain Aw = 0. Tail length is three-fourths of wing span; tail height is zero; a = 20o; A = 0o; _ = 0.5.
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Figure 71.- Sample cross plot of limiting factors in a closed rectangular tunnel when the maximum practical

corrections are applied. _' = 2/3; o = 1/2. (See table II(a).)

300



CL/A

I00

I0

Limited by

0 xf/b

[] Aa

0 qc/q

A Ai t

/1 qt/qc

D Ai w

a d Aiwld(yls)

0 Aq/q c

(a) f = 3.

Figure 72.- Limits of testing in closed tunnels when applying the maximum practical corrections. (See table II(a).)

301



CL/A

I00

IO

Limited by

O xf/b

[] Aa

qc/q

A Ai t

/! qt/qc

I_ Z_i w

0 d Aiwld(yls)

O Aq/q c

.I
-I.O O

D/L

(b) _,=2.

Figure 72.- Continued.

I.O

302



CL/A

100

I0

A,deg

0

15

50

45

Limited by

O xf/b

[] &a

0 qc/q

Z_ Z_i t

.,4 qt/qc

I_ Ai w

a d Aiw/d(y/s)

O Aq/q c

O

D/L

(c) _ = 2 with semicircular sides.

Figure 72.- Continued.

303



CL/A

I00

IO

A,deg

0

15

50

45

Limited by

O xf/b

[] /ke

O qc/q

A /ki t

/I qt/qc

I_ /ki w

a d/kiw/d(y/s)

O /kq/qc

304

0

D/L

(d) _' = 1.5.

Figure 72.- Continued.

1.0



CL/A

IOO

I0

.I
-I.O 0

D/L"

(e) "( = 4/3.

Figure 72.- Continued.

Limited by

O xf/b

[] L_a

qc/q

/k /ki t

/! qt/qc

D Ai w

O d L_iw/d(y/s)

O L_q/q c

m

I.O

305



CL/A

I00

I0

Limited by

O xf/b

[] Aa

qc/q

A Z_i t

/1 qt/qc

1_ Ai w

a d Aiw/d(y/s)

O Aq/q c

.I
-I.O O

D/L

(f) _"= 1.

Figure 72.- Continued.

I.O

306



CL/A

I00

I0

.I
-I.0

___ L - _-
_¢_ _ = _-

,

_ _- _ _

--- _ =_' i -

.B.,deg

0

45

!-
=-_== _1

L
t

--I

I
!
1
=

i
)

I
I --

I
i

)
-I

J
-I

!
I

I

i

I

i

i

m

m ----

i

i

0

D/L

(g) _' = 2/3.

Figure 72.- Continued.

Limited by

0 xf/b

[] Ao

qc/q

/k /kit

/1 q.i./q c

I_ _i w

a d Aiw/d(y/s)

307



CLI A

I00

I0

0

45

0

D/L

_T

; i:

:i t

: [ {

_,==i
r

?

:L
3/4

?f

a-r----.4-_'

i i ] ,

L L4_

!-_]_

.ii;N

i[!it
L _ }.=

!i!
!i_]],

j. !_
IIII,

-__i
I1_i r:
If f I r

!_T ! :

i i i i i

i i , i

Ill t-

_-i_I_

I

?

_i_i

>

L_

:i

-f..

_J

J

Limifed by

O xf/b[] A,,

I_ c/qAi t

/1 qt/qc

I_ Z_iw

O d/Xiw/d(y/s)

O ZXq/q c

"%

N

!_
[

I

I

1.0

(h) _, = ]/2.

Figure 72.- Concluded.

3O8



CLI A

I00

I0

Limited by

O xf/b

[] /ka

qc/q

A /ki t

/1 qt/qc

D /ki w

O d/kiw/d(y/s)

O /kq/qc

.I
-I.O O

D/L

(a) _, = 3.

Figure 73,- Limits of testing in closed tunnels when applying moderate corrections. (See table II(b).)
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Figure 7.5.- Limits of testing in tunnels closed only on the bottom when the maximum practical corrections are applied. (See table ll(a).)
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Figure 76.- Limits of testing in tunnels closed only on the bottom when moderate corrections are applied. (See table II(b).)
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Figure 77.- Limits of testing in tunnels closed only on the bottom when no corrections are applied. (See table ll(c).)
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Figure 77.- Concluded.
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Figure 78.- Limits of testing in a closed-on-bottom-only tunnel with variable model height when the maximum
practical corrections are app!i_. (See table flea)., _, = !.5.
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Figure 79.- Limits of testing in a closed-on-bottom-only tunnel with variable model height when moderate

corrections are applied. (See table II(b).) _" = 1.5.
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Figure 79.- Concluded.
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Figure 80.- Limits of testing in a closed-on-bottom-only tunnel with variable model height when
no corrections are applied. (See table I I(c).) _" = 1.5.
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Figure 80.- Concluded.
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Figure 82.- Effect of model mounting on testing limits in a 2- by 3-meter closed tunnel when the maximum practical corrections are applied.
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Figure 82.- Continued.
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Figure 82.- Concluded.
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Figure 83.- Effect of model mounting on testing limits in a 2- by 3-meter closed tunnel when moderate corrections are applied.
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Figure 83.- Continued.
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Figure 83.- Concluded.
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Figure 84.- Effect of model mounting on testing limits in a 2- by 3-meter closed tunnel when no corrections are applied.
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Figure 84.- Concluded.
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Figure 85.- Effect of model mounting on testing limits in a 2- by 4-meter closed tunnel when the maximum practical corrections are applied.
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Figure 85.- Continued.
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Figure86.- Effectof modelmountingon testing limits in a 2- by 4-meterclosedtunnel when moderatecorrectionsare applied.
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Figure 86.- Continued.
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Figure 86.- Concluded.
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Figure 87.- Effect of model mounting on testing limits in a 2- by 4-meter closed tunnel when no corrections are applied.
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Figure 87.- Concluded.

353



CL/A

I00

I0

__=

q

=- _

_d

I

_ =

!_. -

.I
-I.0

_ rz _

_- __m:_

if-. -

i --

i I -

L L_

i: F-

i-ii2

r: !_

0

D/L

0

45

1.0

(a) With maximum practical corrections.

Figure 88.- Effect of model mounting on testing limits for a wing with full span of I meter in a 2- by 2-meter closed tunnel.
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Figure 88.- Continued.
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Figure 88.- Coocluded.
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Figure 89.- Effectof various modes of operation on testing limits in the Langley V/STOL tunnel (_' = 1.5). o = 1/2.
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Figure 89.- Continued.
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Figure 8g.- Concluded.
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Figure 90.- Comparison between Langley fulliscale tunnel with ground board and a closed9.1- by 18.3-m (30- by _-ft) tunnel
with semicircular sides when using the maximum practical corrections, o = 2/3.
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Figure 91.- Comparison between closed 7.5- by 15-m tunnel with semicircular sides and a rectangular 8- by 12-m tunnel
, ,i..^_w,,_,, maximum corrections are applied. (See table II(a).)
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Figure 92.- Comparison of limits in a rectangular 8- by 12-m tunnel and a 7.5- by 15-m tunnel with semicircular sides
when moderate r_orrections are applied. (See table I I(a).)
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Figure 92.- Continued.
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Figure 92.- Continued.
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Figure 92.- Concluded.
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Figure 93.- Comparison of testing limits in a rectangular 8- by 12-m tunnel and a 7.5- by 15-m tunnel with semicircular sides
when no corrections are applied. 0 -<A < 30. (See table II(c).)
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